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We consider the likelihood ratio test for the simple hypothesis, H0 : p =
p0 versus the alternative Ha : p 6= p0 in the case of group testing. Assume
that the group size is n and that m groups have been collected and tested.
Let Xj the the Bernoulli random variable which is 0 when the group tests
negative and 1 when it tests positive. Let T =

∑m
j=1Xj then T has the

probability mass function,

P (T = t|n,m, p0) =

(
m

t

)
[1− (1− p0)n]t[(1− p0)n]m−t (1)

The maximum Likelihood Estimator of p is well known to be,

p̂ = 1− (1− t/m)1/n (2)

and so the likelihood ratio statistic for the test is,

λ =

[
1− (1− p̂)n

1− (1− p0)n

]t [ (1− p̂)n

(1− p0)n

]m−t
(3)

Finally, W = −2 ln(λ) is known to be asymptotically distributed (m→∞)
as χ2(1) in this case. When the number of groups tested, m, is small,
Bartlett [1] suggested a way to improve the approximation by replacing

W by W̃ = (1 + b1
m )−1W , where b1 is such that EH0(W̃ ) = 1 +©(m−2)

while EH0(W ) = 1 +©(m−1). Barndorf-Nielsen and Cox [2] and Barndorf-
Nielsen and Hall [3] among others enlarged on Bartlett’s work. In making
this adjustment Bartlett found a statistic whose mean was closer to the
expectation of the χ2 and in so doing hoped to improve the approximation.
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1 Derivation of b1

From equation 3 , the definition of W ,the known form of p̂ from equation
2 and some algebra yields,

W = w(T ) = 2T ln(T/m)+2(m− T )ln(1− T/m)− 2T ln[1− (1− p0)n]

(4)

− 2(m− T )ln[(1− p0)n]

To find the necessary value of b1, w(T ) will be expanded in a Taylor series
in powers of (T − EH0(T )) , EH0(T ) = m(1 − (1 − p0)

n) and termwise
expectation will be taken. The result will be an expansion for EH0(w) such
that,

EH0(w) = 1 +
b1
m

+
b2
m2

+©(m−3)

Let gk =

[
dkw(T )

dT k

]
T=m(1−(1−p0)n)

and let t0 = m(1− (1− p0)n) then

w(T ) = 0+0(T − t0)+
1

2
g2(T − t0)2+

1

6
g3(T − t0)3+

1

24
g4(T − t0)4+ · · · (5)

since g0 = g1 = 0 (see Appendix A). It is easy to show at this point that
w(T ) converges in distribution to a χ2(1) random variable as m→∞. Note
that the quadratic term in this expansion is equal to

1

2
g2(T − t0)2 =

1

2

2

m[1− (1− p0)n][(1− p0)n]
(T −m[1− (1− p0)n])2

=

(
m(T/m− [1− (1− p0)n]√
m[1− (1− p0)n][(1− p0)n]

)2

(6)

=

 (T/m− [1− (1− p0)n]√
[1− (1− p0)n][(1− p0)n]

m


2

2



Since T =
∑m

i=1Xi and since the Xi are i.i.d random variables such that
EH0(Xi) = 1 − (1 − p0)n and V ar(Xi) = [1 − (1 − p0)n][(1 − p0)n] < ∞ it
follows from the Central Limit Theorem that

√
m(T/m− [1− (1− p0)n]√
[1− (1− p0)n][(1− p0)n]

D−→ Z ∼ N(0, 1) as m→∞

and hence that the first term in the expansion for w(T ) converges in dis-
tribution to a χ2(1) random variable. Next consider the general term for
k ≥ 3. From appendix A it follows that

gk
k!

(T − t0)k =
2[(1− (1− p0)n)k−1 + (−1)k(1− p0)(k−1)n]

k(k − 1)mk−1[(1− (1− p0)n)(1− p0)n]k−1
(T − t0)k

(7)

=
1

mk/2−1H(k, n, p0)

(√
m[T/m− (1− (1− p0)n)]√
[1− (1− p0)n][(1− p0)n]

)k
where H(k, n, p0) <∞ is a complex function independent of m. As m→∞
the quantity (∗)k converges in distribution to the k − th power of a stan-
dard normal random variable.The quantity m−(k/2−1) → 0 as m→∞ when
k ≥ 3, so by Slutsky’s Theorem all the terms in the series(after the quadratic
term) converge in distribution to a degenerate distribution with point mass
at 0 as m tends to infinity. It is known [6] the convergence in distribution
to a degenerate distribution implies convergence in probability to the same
constant and so a second application of Slutsky’s Theorem shows that the
limiting distribution of w(T ) is a χ2(1). As an aside we note as well that

the first term of those which converge to zero in probability is ©p

(
1√
m

)
.

Returning to the derivation of b1, set g̃k = mk−1gk and take the expec-
tation termwise in equation 5 to obtain,,

EH0(w(T )) =
g̃2µ2
2m

+
g̃3µ3
6m2

+
g̃4µ4
24m3

· · ·+ g̃kµk
k!mk−1 + · · · (8)

Next it is shown in Appendix B that the moments, µk can be expressed as
polynomials in m with coefficients which are functions of w = 1− (1− p0)n.
For example µ2 = c21m, µ3 = c31m, µ4 = c41m+ c42m

2 and so forth. With
this notation, equation 8 can be written as

3



EH0(w(T )) =
g̃2c21m

2m
+
g̃3c31m

6m2
+
g̃4(c41m+ c42m

2)

24m3
+
g̃5(c51m+ c52m

2)

120m4

+
g̃6(c61m+ c62m

2 + c63m
3)

720m5

+
g̃7(c71m+ c72m

2 + c73m
3)

5040m6
(9)

+
g̃8(c81m+ c82m

2 + c83m
3 + c84m

4)

40320m7

+
g̃9(c91m+ c92m

2 + c93m
3 + c94m

4)

8!m8
+ · · ·

Collecting terms in powers of 1/m yields,

EH0(w(T )) =
1

2
g̃2c21 +

1

m

[
g̃3c31

6
+
g̃4c42

24

]
+

1

m2

[
g̃4c41

24
+
g̃5c52
120

+
g̃6c63
720

]
(10)

+
1

m3

[
g̃5c51
120

+
g̃6c62
720

+
g̃7c73
5040

+
g̃8c84
40320

]
+©

(
1

m4

)
Letting π = 1− (1− p0)n , and using the moment formulas from appendix
B, it is found that

g̃2µ2
2

=
2

(1− p0)n(1− (1− p0)n)

(1− p0)n(1− (1− p0)n)

2
= 1 (11)

b1 =
g̃3c31

6
+
g̃4c42

24
=

[1− (1− p0)n + (1− p0)2n]

6[1− (1− p0)n][(1− p0)n]
(12)

b2 =
1

m2

[
g̃4c41

24
+
g̃5c52
120

+
g̃6c63
720

]
=

[1− 3(1− p0)n + 3(1− p0)2n]

6[1− (1− p0)n]2[(1− p0)n]2
(13)

. It easily follows from equations 10 through 12 that EH0([1+b1/m]−1w(T ))
has the form 1 +©

(
m−2

)
.
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2 Numerical examples

The purpose of the Bartlett adjustment is to improve the χ2 approxima-
tion to the distribution of −2ln(λ), where λ is the likelihood ratio statistic.
In examining the effectiveness of this adjustment, we recall that the χ2(ν)
distribution is a special case of the general Gamma(α,β) distribution with
α = ν/2 and β = 2. Recall as well, that for any random variable, multipli-
cation by a constant changes the scale parameter. Thus, it would seem that
for a random variable which is approximately a gamma random variable,
that examination of the gamma parameters should shed some light on what
the approximation accomplishes. Since for Y ∼ gamma(α, β), E(Y ) = αβ
and V ar(Y ) = αβ2, given the mean and variance, α and β can be easily
calculated. For the simple hypothesis being considered here, it is possible
to calculate the mean and variance of −2ln(λ) exactly given values for the
parameters m,n and p0 all of which are known. From equation 3 in section
1, we note that w(T ) is a function of the sufficient statistic T =

∑m
i=1Xi

which has a Binomial(θ,m) distribution where θ = 1− (1− p0)n. Hence

EH0(w(T )) =
m∑
t=0

w(t)

(
m

t

)
[1− (1− p0)n]t[(1− p0)n]m−t (14)

In making these calculations it is important to realize that care must be
taken in calculating w(T ) when T = 0 and T = m. In particular, it can be
shown by elementary calculus that

lim
T→0

w(T ) = −2m ln[1− (1− p0)n] (15)

and

lim
T→m

w(T ) = −2mn ln(1− p0) (16)

The EH0(w(T )2) can be calculated using the same approach and V ar(w(T ))
is found by the standard formula. In general, pool screening (group testing)
is used when p0 is small and so we will give calculated results for a number
of values of p0 , pool size n and number of pools m. Note that one must be
careful to choose the pool sizes for a given p0 so that it is improbable that
all the pools are positive. Similarly, a large enough pool size and a sufficient
number of pools is required to avoid the situation where all the pools are
negative; that is n and m must be chosen so that the probability that any
pool is positive is much less than one. Chiang and Reeve [4] suggest less
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m n p0 ∗ EH0(∗) α β 1 + b1/m

50 25 0.01 w 1.01724 0.49858 2.04030 1.01596
w̃ 1.00127 0.49858 2.00826

100 25 0.01 w 1.00827 0.49972 2.01767 1.00798
w̃ 1.00029 0.49972 2.00170

200 25 0.01 w 1.00406 0.49994 2.00837 1.00399
w̃ 1.00007 0.49994 2.00040

50 50 0.005 w 1.01728 0.49857 2.0401 1.01599
w̃ 1.00127 0.49857 2.00831

100 50 0.005 w 1.00829 0.49972 2.01771 1.00799
w̃ 1.00029 0.49972 2.00171

200 50 0.005 w 1.00407 0.49994 2.00839 1.00400
w̃ 1.00007 0.49994 2.00040

Table 1: Effect of the Bartlett adjustment on the scale of the distribution

than 0.5. This is not a problem when p0 < 0.01 but can become a problem
when p0 >> 0.01.

From Table 1 it is clear that in the cases presented EH0(W̃ ) is much
closer to the value 1 which would be correct for the χ2(1) distribution,
than EH0(W ). The coefficients of the gamma distribution calculated as
moment estimates are also closer to the correct values for the χ2(1). Because

the correction factor in all cases is greater than one, it is clear that W̃ is
always less than W . It is unclear, however, whether this adjustment is
really valuable in the case of this statistic. The actual distribution of W
and hence of W̃ is discrete since these are functions of the random variable
T which is discrete and takes on values in the set Λ = {0, 1, 2, · · · ,m}.
Furthermore, the probability mass function of T is given in equation 1 and
is completely specified since m,n and p0 are known. From this it follows
obviously that Pr(W = w(t)) = Pr(T = t|m,n, p0). All values of W are
easily calculated, even when m is large, so Pr(w > wC) can be calculated
exactly. Thus asymptotic results are not required although they require
much less computation. The question then becomes, how well does the use
of the adjusted asymptotic statistic, W̃ , or of W itself do with respect to the
level of the test compared to the test based on the exact discrete distribution?.
Table 2 presents calculations intended to shed light on this question.
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m n p0 Desired α-level of Exact Test
α level Bartlett Adjusted α level

Asymptotic Test

25 25 0.01 0.10 0.09568 0.09568
0.05 0.04990 0.04989
0.01 0.00581 0.00581

50 25 0.01 0.10 0.08953 0.08953
0.05 0.03999 0.04000
0.01 0.01090 0.00554

100 25 0.01 0.10 0.08182 0.09182
0.05 0.05349 0.04252
0.01 0.01142 0.00763

200 25 0.01 0.10 0.10733 0.08837
0.05 0.05069 0.04071
0.01 0.00814 0.00814

25 50 0.005 0.10 0.09586 0.09587
0.05 0.04961 0.04961
0.01 0.00576 0.00576

50 50 0.005 0.10 0.08965 0.08965
0.05 0.04000 0.04000
0.01 0.01096 0.00540

100 50 0.005 0.10 0.09186 0.09186
0.05 0.05359 0.04276
0.01 0.01147 0.00756

200 50 0.005 0.10 0.08822 0.08823
0.05 0.05086 0.04055
0.01 0.00814 0.00827

Table 2: Exact α level for Bartlett Adjusted statistic versus α-level for the
exact test

In Table 2 the α-level for the likelihood ratio test based on the Bartlett
Adjusted test statistic W̃ is presented based on direct calculations. The
decision function ψ(W̃ ) is introduced where

ψ(w) =

{
1 if w ∈ S
0 if w /∈ S (17)

and S = {w |w ≥ χ2
1−α(1)}. Then the level of the test is given by α =

EH0(ψ(W̃ )). For comparison purposes, the α-levels for the exact test are
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also given in the last column. Since these exact tests take into account the
discreteness of W̃ they are necessarily more conservative than desired. For
the most part, the asymptotic test seems to follow the exact test pretty well.

It is instructive to consider the decision function for a randomized test
as described by Lehmann [5]. The decision function φ is defined as

φ(w) =


1 if w ∈ S
γ if w = wC
0 if w 6= wC and w /∈ S

(18)

where wC is such that Pr(W > wC | p = p0) < α and Pr(W < wC | p =
p0) > α, S is the set S = {w |w > wC} and γ is a constant such that
EH0(φ) = Pr(W ∈ S) + γPr(W = wC) = α. The constant γ is always
such that 0 ≤ γ ≤ 1. In performing a randomized test, the null hypothesis
is rejected when φ(w) = 1 and fails to reject when φ(w) = 0. If W = wC
a Bernoulli trial with success probability equal to γ is performed and if
the trial is a success, then the null hypothesis is rejected. The randomized
test is always of size α and the size of γ is suggestive about how often wC is
included in the rejection set; that is, how close is Pr(W ≥ wC) to the desired
test size α. Consider for example the case m = 50, n = 25 and p0 = 0.01
for which γ = 0.83192. Table 3 presents the upper tail of the distribution
function and probability mass function for W̃ in this case. The critical

w̃ Pr(W̃ ≥ w̃) Pr(W̃ = w̃)

6.23453 0.015772 0.0048705
7.15880 0.010901 0.0053651
7.82050 0.005537 0.0021564
9.57057 0.003380 0.0008799

Table 3: Upper tail of the distribution of W̃ near the critical value, w̃C ,
when m = 50, n = 25 , p0 = 0.01 and α = 0.01

value is w̃C = 7.15880. Note that Pr(W̃ ≥ 7.15880) = 0.010901 which
is very close to the desired α-level for the test. Since γ = 0.83192 the
randomized test will reject 83 % of the time when wC is observed. The
critical value for the Chi Square with one degree of freedom and α = 0.01
is 6.63489 which is less than wC but larger than the next smallest possible
value of w̃ and so the asymptotic test includes wC in the critical region.
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w̃ Pr(W̃ ≥ w̃) Pr(W̃ = w̃)

6.49355 0.013407 0.0023601
6.57440 0.011047 0.0029046
7.32540 0.008143 0.0015472
7.57317 0.006596 0.0017840

Table 4: Upper tail of the distribution of W̃ near the critical value, w̃C ,
when m = 200, n = 25, p0 = 0.01 and α = 0.01

Similarly, when m = 200, n = 25, p0 = 0.01 and α = 0.01 , Table 4
shows the details in the neighborhood of the critical value wC = 6.57440
where again the critical value of the Chi Square is 6.63489. In this case,
γ = 0.63931 which means that the Bernoulli trail part of the randomized
test would reject 63 % of the time. In this case, the χ2(1) critical value is
larger than wC so that the level of the asymptotic test is more like the level
of the exact test for the discrete random variable W̃ .

3 Summary Conclusions

The performance of the statisticW (T ) = −2 ln(λ(t)) after applying a Bartlett
Adjustment in small to medium size samples has been considered. The level
of the asymptotic has been compared to the level for a test based on the
exact distribution of W and it has been found that, in general, the adjusted
statistic W̃ produces tests with significance levels comparable to what is
found using an exact test, but far less computational effort. Most impor-
tantly, the size of the test never is too far from the desired level. In a few
cases, the actual size is marginally larger that the desired size, but more
often the level of the test approximates the level of the exact test.
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Appendices

A Derivatives of w(T ) at T = EH0
(T )

The derivatives of w(T ) with respect to T , evaluated at EH0(T ) are easily
found using algebra software such as Maple. This leads to the coefficient val-

ues used in the expansion of section 1. In what follows,

[
dkw(T )

dT k

]
T=1−(1−p0)n

will be denoted by gk, k = 0, 1, · · · .

g0 = g1 = 0 (19)

g2 =
2

m(1− p0)n(1− (1− p0)n)
(20)

g3 =
2[1− 2(1− p0)n]

m2[1− (1− p0)n]2[(1− p0)n]2
(21)

g4 =
4[(1− (1− p0)n)3 + (1− p0)3n]

m3[1− (1− p0)n]3[(1− p0)n]3
(22)

g5 =
12[(1− (1− p0)n)4 − (1− p0)4n]

m4[1− (1− p0)n]4[(1− p0)n]4
(23)

g6 =
48[(1− (1− p0)n)5 + (1− p0)5n]

m5[1− (1− p0)n]5[(1− p0)n]5
(24)

10



In general, gk for k ≥ 3 is given by,

gk =
2(k − 2)![(1− (1− p0)n)k−1 + (−1)k(1− p0)(k−1)n]

mk−1[1− (1− p0)n]k−1[(1− p0)n]k−1
(25)

B Higher moments about the mean of the Bino-
mial Distribution

The moments about the mean of the Binomial distribution are needed to
develop the expansion used in finding the expected value of w(T ) in section
1. To ease that derivation, the moments will be expressed as polynomials in
m with coefficients which are functions of π. For a Binomial distribution,
Bin(π,m) we know that the mean is mπ. The higher moments are then

µ2 = c21m = π(1− π)m (26)

µ3 = c31m = π(1− π)(1− 2π)m (27)

µ4 = c41m+ c42m
2

(28)

= [π(1− π)(6π2 − 6π + 1)]m+ [3π2(1− π)2]m2

µ5 = c51m+ c52m
2 (29)

where

c51 = π(1− π)(1− 2π)(12π2 − 12π + 1)

(30)

c52 = 10π2(1− π)2(1− 2π)

Similarly,
µ6 = c61m+ c62m

2 + c63m
3 (31)

where

c61 = π(1− π)(120π4 − 230π3 + 150π2 − 30π + 1)

c62 = 5π2(1− π)2(26π2 − 26π + 5) (32)

c63 = 15π3(1− π)3
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µ7 = c71m+ c72m ∗ 2 + c73m
3 (33)

where

c71 = π(1− π)(1− 2π)(360π4 − 720π3 + 420π2 − 60π + 1)

c72 = 14π2(1− π)2(1− 2π)(33π2 − 33π + 4) (34)

c73 = 105π3(1− π)3(1− 2π)

and

µ8 = c81m+ c82m
2 + c83m

3 + c84m
4 (35)

where

c81 = π(1− π)(5040π6 − 15120π5 + 16800π4 − 8400π3 + 1806π2 − 126π + 1)

c82 = 7π2(1− π)2(1044π4 − 2088π3 + 1352π2 − 308π + 17)

(36)

c83 = 70π3(1− π)3(34π2 − 34π + 7)

c84 = 105π4(1− π)4

C The Exact Distribution of the Likelihood Ratio
Statistic

For the test of the simple hypothesis considered in this report, it is possible
to find the exact distribution of the Likelihood Ratio Statistic or any of its
transformed versions (e.g. the Bartlett Corrected Statistic). We will confine
the discussion to the function w(T ) defined in section 1 as,

W = w(T ) = 2T ln(T/m)+2(m− T )ln(1− T/m)− 2T ln[1− (1− p0)n]

(37)

− 2(m− T )ln[(1− p0)n]

T is a Binomial random variable with parameters 1− (1− p0)n and m and
consequently takes values in the set AT = {0, 1, · · · ,m}. The function, w(T )
is a mapping from the set AT onto a set B ⊂ < such that

B = {w̃|w̃ = w(T ) for some T ∈ AT }
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The set B is discrete and contains no more than m+ 1 elements. For each
w̃ ∈ B there exists a set of values of T , denoted by Sw̃ ⊂ AT such that every
T ∈ Sw̃ maps into the same value w̃ under the transformation w(T ); that
is, Sw̃ is the pre-image of {w̃} under the mapping. Then from elementary
probability theory, P (w(T ) = w̃) = P (T ∈ Sw̃). Since the random variable
T is restricted to a set on integers, it is expected that most of the time the
pre-image set for any w̃ will contain a single element and so W (T ) will be
1-1. Extensive computational work supports this conjecture. Based on this
relationship, the distribution function of w̃ is easily calculated.
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