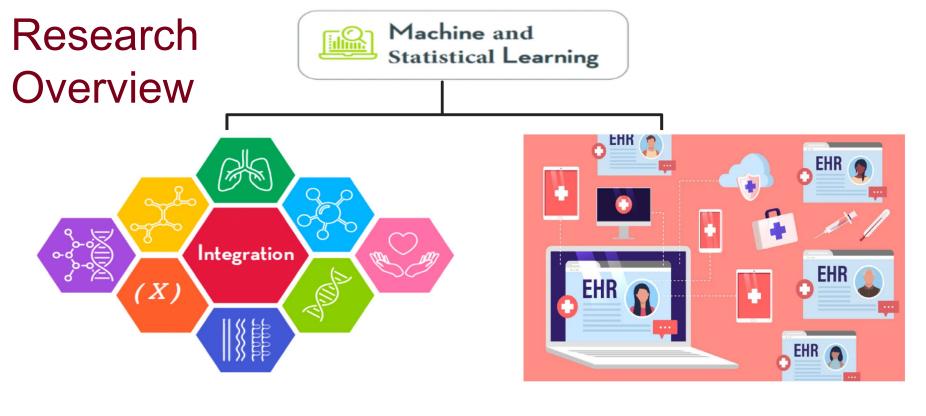
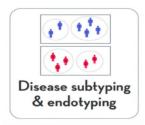
Applications of Machine Learning in EHR for HIV Subphenotyping @ COERE 2025 Annual Methods Symposium

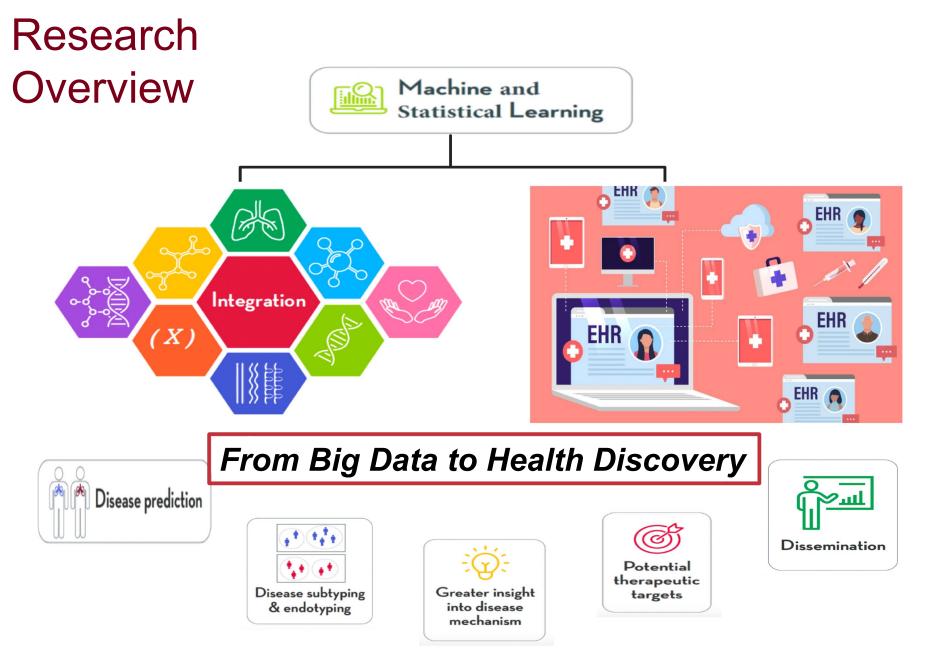
Sandra Safo (<u>ssafo@umn.edu</u>; <u>www.sandraesafo.com</u>) Division of Biostatistics and Health Data Science

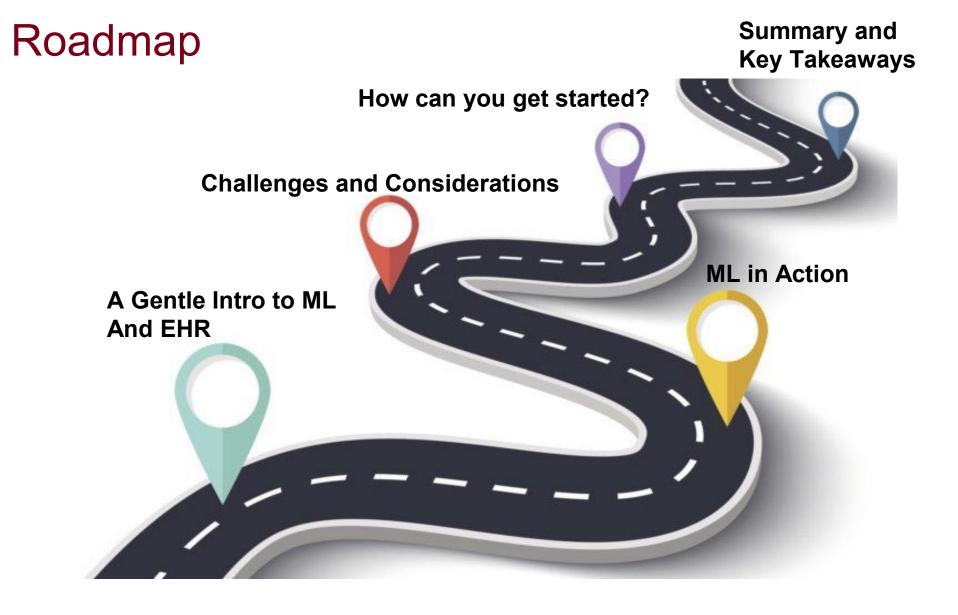
April 10, 2025 Financial Disclosure: None





Greater insight into disease mechanism





Machine Learning

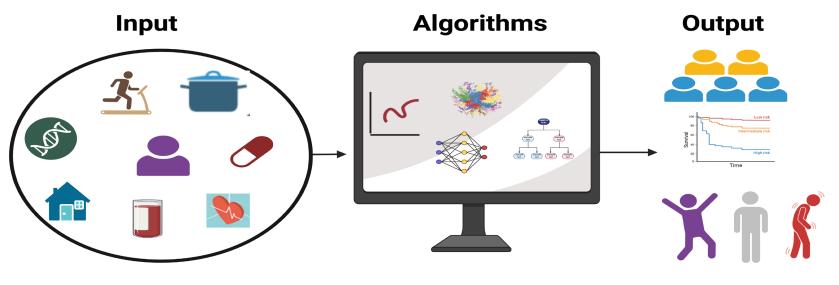


Figure generated with BioRender

Supervised ML

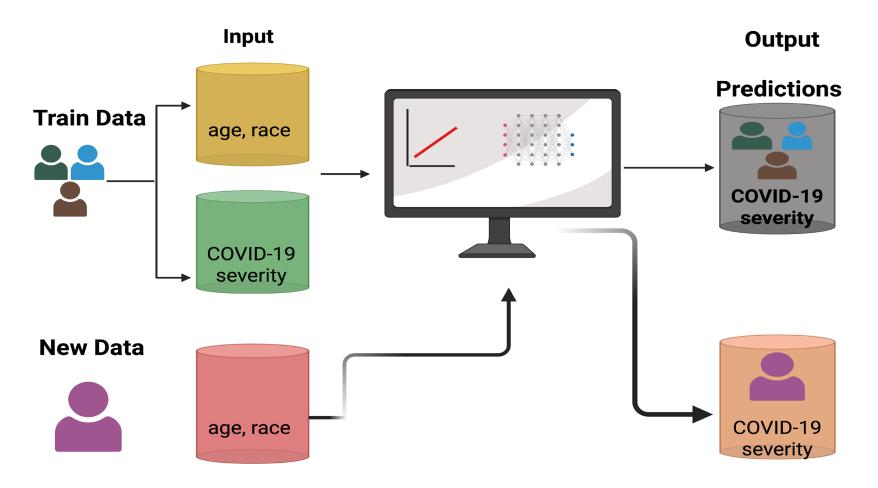


Figure generated with BioRender

Unsupervised ML

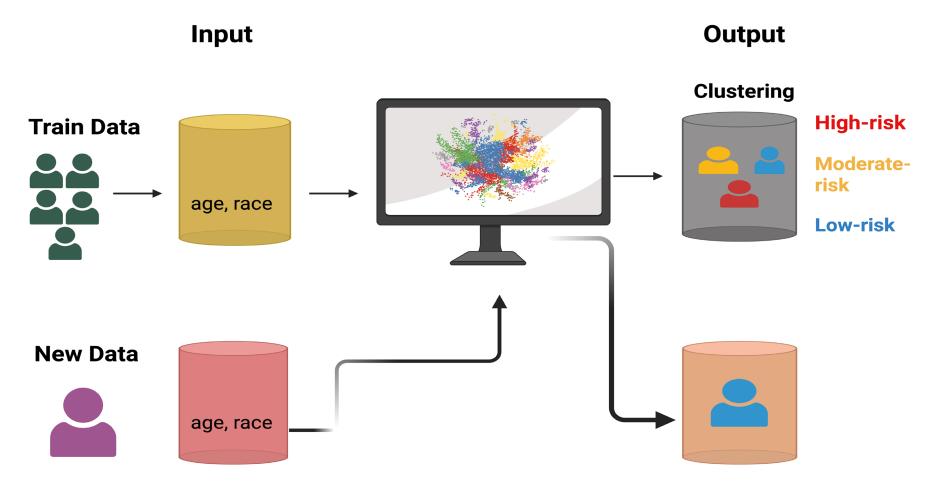


Figure generated with BioRender

Why care about ML?

Some Challenges in Health Care

- Diagnosing diseases early
- Predicting patient outcomes (e.g., risk of severe COVID-19, increased hospitalizations, risk of Long COVID)
- Personalizing treatments based on patient data

• Patient selection for clinical trials

This Photo by Unknown Author is licensed under CC BY-NC-ND

Why care about ML?

Opportunities with ML

- Better diagnostic tools
- Improved decision support
- Data-driven research eliminating guestimates
- Help uncover hidden patterns in large and complex data (e.g., EHR)

This Photo by Unknown Author is licensed under CC BY-SA

Challenges and Opportunities of EHR

Ų

EHR- digitized version of a patient's chart and clinical records over time Structured and Unstructured Data

Challenges

Opportunities

Demographics, Medications, vital signs, past medical history, Comorbidities, laboratory data, doctor's note etc Large, multidimensional, and unstructured

Missingness

Data quality (e.g., misclassification, measurement error, selection bias) Can be cost effective to maintain

Data retrieval is quick

Offers opportunities to answer research questions and improve patient outcomes

Machine Learning in Action: COVID-19 Subphenotyping among Persons Living with HIV (PLWH)

Persons living with HIV (PLWH) are disproportionately impacted by COVID-19

Older age, male sex, a history of smoking and comorbidities, is associated with risk of severe clinical outcomes or death

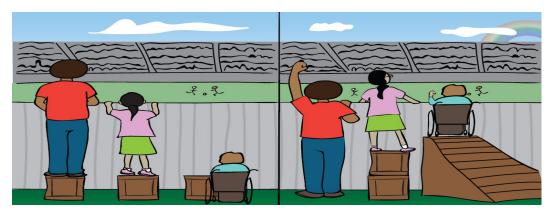
Background and Rationale of Study

PLWH are more likely to have multiple comorbidities

Impact of factors, e.g. clinical comorbidities, predictive of severe COVID-19 among PLWH varies by race/ethnicity

Limited work exists that comprehensively investigate multiple data modalities including demographics, social determinants of health (SDoH), comorbidities, to better understand the characteristics of PLWH who tend to have worse outcomes.

- To **discover** and **validate** clusters with varying risks (COVID-19 severity, death, hospitalizations, Long COVID)
- To investigate the variables characterizing these clusters
- Our findings could
 - Facilitate targeted policy interventions
 - Enable a deeper understanding of health disparities in PLWH and promote health equity



N3C Enclave: One of the largest public HIPAA- limited data set in US history 10/10/24

National COVID Cohort Collaborative

Persons: 22.8 million

COVID+ Cases: 8,914,402

Clinical Observations: 3.3 billion

Ê

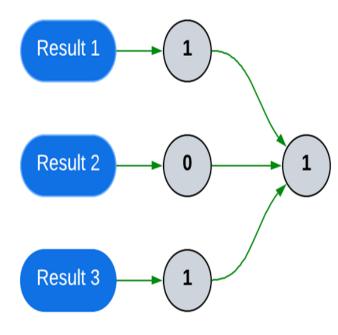
Lab Results: 16.3 billion

Medication Records: 5.3 billion

	Data from N3C (National COVID Cohort Collaborative)	Spans multiple states and hospitals January 1, 2020 to November 2, 2023
Ę	Exclusions	Age < 18 Individuals taking medications for HIV prevention or treatment of chronic hepatitis B infection
Ug	Outcome : COVID-19 Severity	Not Severe: Asymptomatic to symptomatic assistance needing hospitalization Severe: Hospitalized with invasive mechanical ventilation, extracorporeal membrane oxygenation [ECMO], discharge to hospice or death

Input Variables: demographics, comorbidities, lab measurements, social determinants of health (SDoH)

Methods



Data splitting (Focus on PLWH)

- Discovery set: to detect the clusters
- Testing set: to reproduce the clusters

Variable selection

- Identify which input variables discriminate COVID-19 severity group
- Use these variables to cluster individuals
- Incorporate resampling techniques for statistical rigor and address missingness

Cluster Detection

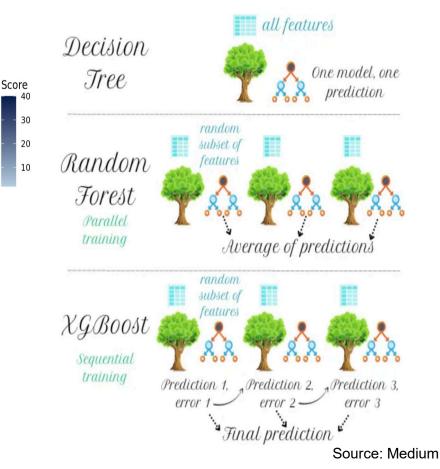
Reproduce Clusters

Variable Ranking via Ensemble of Methods

Variable Importance by Methods

Bilirubin total (mg/dL) —	39.4	39.2	40	40	40	39.7
Albumin (g/dL) —	37.8	37.8	39	39	39	38.5
ALT/SGPT (IU/L) —	39.6	39.8	38	38	37	38.5
CHF -	37	37	33.8	37	38	36.6
Hemoglobin (g/dL) —	35	34.8	36.8	35.2	31.2	34.6
Temperature (degrees C) —	36	36	29.4	34.4	33.4	33.8
Glucose (mg/dL)	31.4	31.6	33.4	35.4	34.4	33.2
Renal Disease	32.6	32.6	26.2	32.4	36	32
Respiratory rate (BPM) -	27.2	27.6	26.8	29.2	32.8	28.7
Creatinine (mg/dL) -	27.2	27.4	27.8	31.6	23	27.4
Current Smoker -	34	34.4	10.4	26	25	26
Stroke –	29.4	28.8	16.2	21.8	26	24.4
Diastolic blood pressure	20	20.2	32.6	22.2	19.8	23
Systolic blood pressure (mmHg) —	21.6	20.6	32	19.4	17.6	22.2
AST/SGPT (IU/L) -	18	21.6	21	20.2	29.2	22
BMI before COVID	17.6	19.4	21.2	28.4	21.8	21.7
Lymphocytes (x10E3/uL) —	10.8	9.6	21.6	31.8	32.4	21.2
Race Ethnicity: Hispanic	31.4	31.4	9.8	14.4	17.2	20.8
Sodium (mmol/dL) –	16.2	15.4	30.6	20.2	20.4	20.6
Chloride (mmol/dL)	11.4		30.4	24.6	25.8	20.2
Age (years)	10.8	8.2	36.2	24.8	17.6	19.5
Myocardial Infarction	26	24.2	15	14.2	17.8	19.4
Platelet count (x10E3/uL) -	15.2	13.8	21.8	26.8	17.4	19
cci dmcx –	23.8	23.6	17.6	10.6	17.2	18.6
Mild Liver Disease –	24.4	23.6	6.8	17.8	19.6	18.4
Pulmonary –	25.6	25.8	2.4	11	24.6	17.9
nite blood cell count (x10E3/uL) -	11	8.4	12.8	25.6	25.6	16.7
Metastatic Cancer –	20.4	19.6	15.6	8.2	19.6	16.7
Paralysis -	21.4	20.6	8.6	7.6	17.2	15.1
BUN/Creatinine ratio	11.2	8.8	23.4	14	17.2	14.9
Gender: male	16	16.8	6.4	7.6	26.6	14.7
Peripheral Vascular Disease	15.8	14.2	14.2	10.4	17.2	14.4
Cancer -	19.6	18.4	11	3.4	17.2	14
Potassium (mmol/L) –	10.8	9.4	12.6	15.8	20.6	13.8
Diabetes –	12.4	11.2	21	2.4	17.6	12.9
Severe Liver Disease –	10.8	8.2	20.6	5	17.0	12.9
Neutrophils (x10E3/uL) –	11.4		2.6	20.2	17.2	12.4
SpO2	11.4	10.2		8.8	17.2	12.1
Peptic Uicer Disease	12.0	10.2	7.8	3.4	17.2	10.4
Rheumatic Disease	12.4	11.4	2		17.2	9.4
Kneumatic Disease		12.0	2	2.4	17.2	
	18550	Hastic Net	dom Forest	+6 8005t	LightGBM	overall
	م ^{وره} ` Mean Score for Methods					

LASSO (Least absolute <u>shrinkage</u> and <u>selection</u> operator), Elastic Net, Random Forest, XG Boost, Light GBM



Wh

Baseline Characteristics

	All N3C (n=5622302)	Persons without HIV (n=5547210)	Persons with HIV (n=75092)
COVID-19			
Not Severe	5527166 (98%)	5453251 (98%)	73,915 (98%)
Severe	95136 (1.7%)	93959 (1.7%)	1.177 (1.6%)
Smoking Status			
Non smoker	5230971 (93%)	5166174 (93%)	64697 (86%)
Current or former smoker	391431 (7.0%)	381036 (6.9%)	10395 (14%)
Sex			
Females	3231360 (57%)	3195925 (58%)	35435 (47%)
Males	2390942 (43%)	2351285 (42%)	39657 (53%)
Race/Ethnicity			
Hispanic or Latino Any Race	688110 (12%)	679102 (12%)	9008 (12%)
Black or African American	661217 (12%)	646374 (12%)	14843 (20%)
Non-Hispanic			
White Non-Hispanic	3403103 (61%)	3359522 (61%)	43581 (58%)
Other Non-Hispanic	869872 (15%)	862212 (16%)	7660 (10%)
Comorbidities > 4	152187 (2.7%)	147787 (2.7%)	4400 (5.9%)

Executive Summary

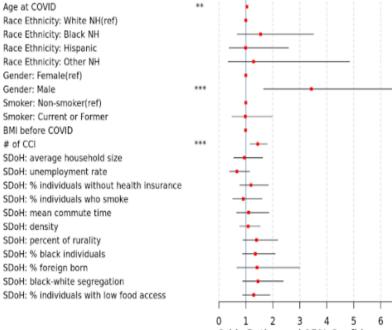
Cluster 1:	Cluster 2:	Cluster 3:
Low-risk	Moderate-risk	High-risk
Lowest age	Female	Male
Hispanic or Latino		Current or former smoker
Other Non-Hispanic	Older age	Black Non-Hispanic
		Highest BMI
No or lowest number	White Non-Hispanic	Highest HIV viral load
of comorbidities	Lowest BMI	
		Most number of
Relative healthier	Highest CD4 count	comorbidities
indicated by lab-	percent	Higher proportions of death,
related variables	percent	long COVID &
		hospitalization

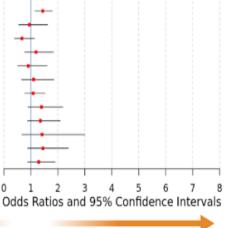
Cluster Comparison	Odds of COVID-19 Severity	Odds of Death	Odds of Long COVID- 19
Cluster 3 vs Cluster 1	20 times more likely	11 times more likely	1.3 times more likely
Cluster 2 vs Cluster 1	3 times more likely	2 times more likely	Similar odds
Cluster 3 vs Cluster 2	6 times more likely	6 times more likely	1.23 times more likely

e University of Minnescer

Cluster 1 vs Cluster 3- Severe COVID-19

Cluster 1: Low-risk cluster

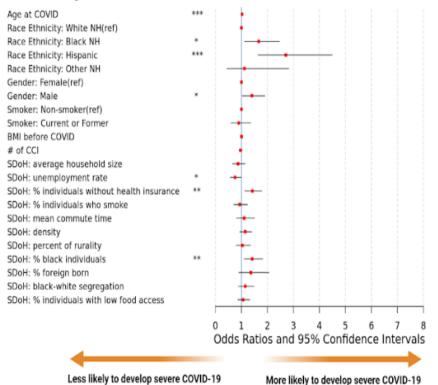




Less likely to develop severe COVID-19

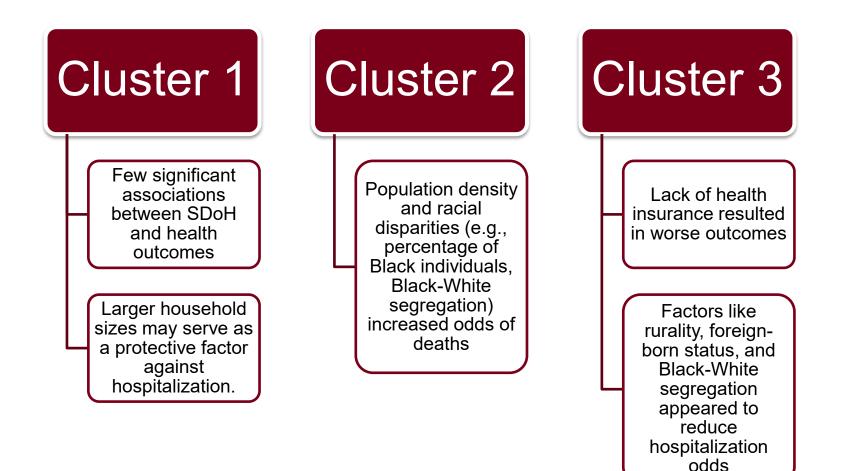
More likely to develop severe COVID-19

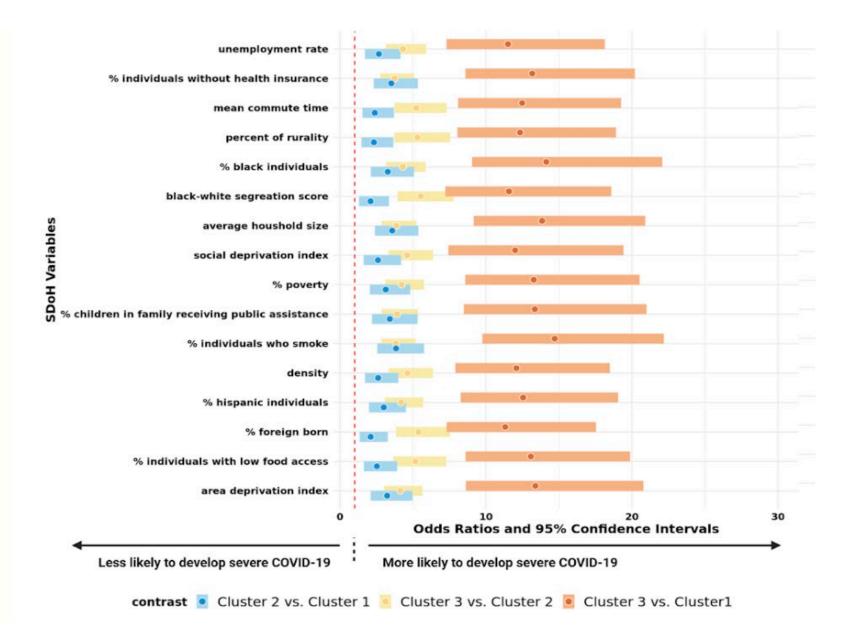
Cluster 3: High-risk cluster



SCHOOL OF **PUBLIC HEALTH**

Comparison of SDoH across Clusters





Implications of findings

Offer deeper insights into characteristics of PLWH with worse COVID-19 outcomes

Could enable targeted policy interventions and improve health equity

Provides a deeper perspective of the intersections of social determinants of health and COVID-19 clusters in PLWH

Approach could be adopted to other clinical outcomes in HIV

Limitations of Work

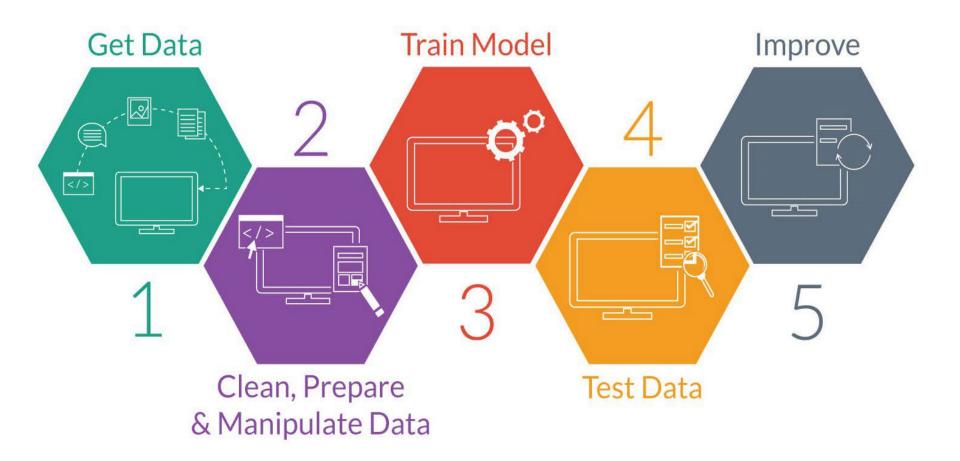
Missing data in lab measurements

Resampling approach might affect our findings

Limited sample size for HIV-specific variables

No adjustment for vaccination

How can you get started with ML?



Some Challenges and Considerations of ML

Ethical concerns

Data privacy (HIPAA-compliance) Algorithmic fairness

Limitations of ML

Clinical judgment vs machine learning predictions

The need for transparent, interpretable models (e.g., why a prediction was made)

Conclusions and Takeaways

I just need the main ideas

ML is an exciting tool that can improve healthcare, particularly in EHR

Can improve precision medicine, detect disease early, reduce human error, identify patients for clinical trials and many more

Call to action

Consider exploring simple ML models in your work

Get involved with others using ML and learn to do the dirty work

Learn to code in R/Python (Coursera etc.)

Tiankai Xie

N3C HIV-Subdomain team

NIH Funding

UNIVERSITY OF MINNESOTA Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.