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Preface

These are notes for a rigorous course on multi-variable calculus, the calculus of differ-
entiation and integration of functions of several variables.

Two excellent books on the subject are the following:
• Walter Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New

York-Auckland-Düsseldorf, third edition, 1976. (Chapters 9 & 10)
• Michael Spivak. Calculus on manifolds. A modern approach to classical theorems

of advanced calculus. W. A. Benjamin, Inc., New York-Amsterdam, 1965.
To a large extent my notes follow one or the other of these books. The notes are terse

giving the students an opportunity to devise proofs for themselves.
The notes presuppose a familiarity of the reader with single-variable calculus, topology,

and linear algebra. Some results from linear algebra are collected in Appendix A (without
proof). Appendix B gathers a few more miscellaneous facts.

Also at the end of the notes the reader may find an index of terms and a list of symbols
which refer to the page where they are introduced.

Finally a word on notation: Throughout the notes the symbols j, k, ℓ, m, and n will
refer to elements of N, the set of natural numbers. Also, the symbol Ω denotes an open set
in Rn unless noted otherwise.

Hints and comments for the instructor are in blue.
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CHAPTER 1

Limits and continuity

1.1. Inner products, norms, and metrics

1.1.1 The inner product on Rn. Let X be a real vector space and assume that for every
pair (x, y) ∈ X × X we have a number 〈x, y〉 ∈ R such that the following properties hold
when x, y, z ∈ X and α, β ∈ R:

(1) 〈x, x〉 > 0 unless x = 0.
(2) 〈x, y〉 = 〈y, x〉.
(3) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉.

Then the map (x, y) 7→ 〈x, y〉 is called an inner product or scalar product on X and X,
equipped with an inner product, is called an inner product space.

We necessarily have that 〈x, y〉 = 0 when x = 0 or y = 0.
On Rn an inner product is given by

〈x, y〉 = x⊤y =

n∑
j=1

xjyj .

Here xj and yj denote the components of x and y, respectively. Note that x · y may be 0
even though neither x nor y is 0. We will frequently use the notation x · y for the inner
product on Rn.
1.1.2 Schwarz’s inequality. For any two vectors x and y in an inner product space

Schwarz’s inequality
|〈x, y〉| ≤

√
〈x, x〉

√
〈y, y〉

holds. To see this assume y 6= 0 and find the minimum of t 7→ 〈x+ ty, x+ ty〉 which cannot
be negative.
1.1.3 The norm on Rn. Let X be a real vector space and assume that for every element
x ∈ X we have a number ‖x‖ such that the following properties hold when x, y ∈ X and
α ∈ R:

(1) ‖x‖ > 0 unless x = 0.
(2) ‖αx‖ = |α|‖x‖.
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality).

Then the map x 7→ ‖x‖ is called a norm on X and X, equipped with a norm, is called a
normed (vector) space.

Every inner product space is a normed space with the norm given by

‖x‖ =
√
〈x, x〉.

In particular, ‖x‖ = 0 if and only if x = 0.
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2 1. LIMITS AND CONTINUITY

Since Rn is an inner product space it is also a normed space. We have

|x|2 =

n∑
j=1

x2j .

We are using the same symbol for the norm of a vector in Rn and the absolute value of a
number in R. This causes no harm even when n = 1.
1.1.4 Rn as a metric space. Let X be a set and assume that for every pair (x, y) ∈ X×X

we have a number d(x, y) ≥ 0 such that the following properties hold when x, y, z ∈ X:
(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

Then d is called a distance function or a metric, the number d(x, y) is called the distance of
x and y, and X, equipped with a distance function is called metric space.

Every normed space is a metric space with the distance function given by d(x, y) =
|x− y|. In particular, Rn is a metric space.

Recall that metric spaces are topological spaces when we use the open balls B(x, r) =
{y ∈ X : d(x, y) < r} as a base for the topology.
1.1.5 The norm of a linear operator. Suppose that A is a linear operator from Rn to
Rm. Denote the entries of the matrix associated with A using the standard bases in Rn and
Rm by Aj,k, i.e., Aj,k = e

(m)
j ·Ae(n)k and let M = max{|Aj,k| : 1 ≤ j ≤ m, 1 ≤ k ≤ n}. Then

|Ax|2 ≤ mnM2|x|2 by Cauchy-Schwarz
∑n
k=1 |xj | ≤

√
n|x|. Hence

‖A‖ = sup{|Ax| : x ∈ Rn, |x| ≤ 1}

is a finite number called the norm of A. In fact ‖A‖ ≤
√
mnM .

Note that |Ax| ≤ ‖A‖|x| for all x ∈ Rn. In fact, ‖A‖ = inf{C : ∀x ∈ Rn : |Ax| ≤ C|x|}.
1.1.6 Properties of the operator norm. Let A,B ∈ L(Rn,Rm) and α ∈ R. Then the

following statements hold (justifying the use of the word norm):
(1) ‖A‖ > 0 unless A = 0.
(2) ‖αA‖ = |α|‖A‖.
(3) ‖A+B‖ ≤ ‖A‖+ ‖B‖ (the triangle inequality).

In particular, L(Rn,Rm) is a metric space.
If A ∈ L(Rn,Rm) and B ∈ L(Rm,Rk), then BA ∈ L(Rn,Rk) and

‖BA‖ ≤ ‖B‖‖A‖.

Note, however, that AB may not be defined.
1.1.7 The invertible linear operators form an open set. Suppose A,B ∈ L(Rn,Rn)

and that A is invertible. If γ = ‖B − A‖‖A−1‖ < 1, then |Bx| ≥ |Ax| − |(B −A)x| ≥
(1 − γ)|x|/‖A−1‖ so that B is also invertible. In fact, ‖B−1‖ ≤ ‖A−1‖/(1 − γ). Choose
x = B−1y. Hence the set of invertible linear operators on Rn is open in the space L(Rn,Rn).

1.2. Limits and continuity

The concepts of limits for and continuity of functions between metric spaces is a familiar
from topology. Nevertheless we review these here for functions between Euclidean spaces.



1.2. LIMITS AND CONTINUITY 3

1.2.1 Limits. Suppose f is a function from Ω to Rm and x0 is a point in Ω, the closure
of Ω. The vector L ∈ Rm is called a limit of f at x0, if the following statement holds: for
every ε > 0 there is a δ > 0 such that, for all x ∈ Ω, we have that 0 < |x− x0| < δ implies
|f(x)− L| < ε.

A limit, if it exists, is uniquely determined by f and x0. We denoted it by limx0
f or,

when convenient, by limx→x0
f(x).

The function f has limit L at x0 if and only if the components fk have limit Lk for each
k = 1, ...,m.
1.2.2 Continuity. Suppose f is a function from Ω to Rm and x0 is a point in Ω. We say

that f is continuous at x0, if the following statement holds: for every ε > 0 there is a δ > 0
such that, for all x ∈ Ω, we have that |x− x0| < δ implies |f(x)− f(x0)| < ε.

We see immediately that f is continuous at x0, if and only if it has a limit at x0 which
coincides with f(x0).

The function f is called continuous on Ω, if it is continuous at every point of Ω. The
set of all continuous functions from Ω to Rm is denoted by C0(Ω,Rm).
1.2.3 Continuity of the norm. The norm defined in 1.1.3, a function from Rn to [0,∞),

is continuous.
1.2.4 Linear operators are continuous. If A is a linear operator from Rn to Rm, then

the map x 7→ Ax is continuous.
1.2.5 Continuity of the operator inverse. The map A 7→ A−1 defined on the set of all

invertible operators on Rn is continuous. A−1 −A−1
0 = A−1(A0 −A)A−1

0 .
1.2.6 Limit rules. Suppose f and g are functions from Ω to Rm, h is a function from Ω

to R, and x0 is a point in Ω. Also assume that f , g, and h have limits at x0. Then the
following are true:

(1) limx0
(f + g) = limx0

f + limx0
g.

(2) limx0
f · g = (limx0

f) · (limx0
g).

(3) limx0 hf = (limx0 h)(limx0 f).
Lastly, suppose that f : Ω → Rm has values in the open set Ω′ and limit y0 at x0 and

that p : Ω′ → Rk has limit z0 at y0. Then p ◦ f has limit z0 at x0.
Since the concepts of limit and continuity are closely related these limit rules imply

analogous rules for continuity.





CHAPTER 2

Differentiation

2.1. The total derivative

2.1.1 Definition. Suppose f is a function from Ω to Rm and x0 is a point in Ω. If there
exists a linear operator A : Rn → Rm, i.e., an m× n-matrix A, such that

lim
x→x0

|f(x)− f(x0)−A(x− x0)|
|x− x0|

= 0,

we say that f is differentiable at x0 and call A a total derivative or just a derivative of f at
the point x0.

If f is differentiable at every point of Ω we say that f is differentiable on Ω.1

2.1.2 Uniqueness of the derivative. Suppose f is as in 2.1.1. If A and B are total
derivatives of f at x, then A = B. Suppose 0 6= h ∈ Rn and t > 0. Then |(A − B)h| =
1
|t| |(A−B)(th)| → 0 as t→ 0.

Therefore it is customary to denote the total derivative of f at x by f ′(x). If f is
differentiable on Ω, the map x 7→ f ′(x) is a function from Ω to Rm×n.
2.1.3 Linear approximation. The function f : Ω → Rm is differentiable at x0 if and

only if there exists a linear operator A : Rn → Rm and a function r : Ω → Rm such that
(i) r is continuous at x0, (ii) r(x0) = 0, and (iii) the identity

f(x) = f(x0) +A(x− x0) + |x− x0|r(x)
holds. Of course, A is then equal to f ′(x0).

The function Rn → Rm : x 7→ f(x0) + f ′(x0)(x− x0) is called the linear approximation
of f at x0.
2.1.4 Examples. Suppose Ω = Rn and f(x) = Ax+ b where A ∈ L(Rn,Rm) and b ∈ Rm.

Then f ′(x) = A for every x ∈ Rn.
Let f : R2 → R :

( x
y

)
7→ x2y. Find f ′

(
2
3

)
= (12, 4).

2.1.5 Differentiability implies continuity. If a function is differentiable at a given
point, then it is also continuous there.
2.1.6 Differentiation rules for sums and products. Suppose f and g are functions

from Ω to Rm, h is a function from Ω to R, and x is a point in Ω. Also assume that f , g,
and h are differentiable at x. Then the following statements hold:

(1) (f + g)′(x) = f ′(x) + g′(x).
(2) (f · g)′(x) = f(x)⊤g′(x) + g(x)⊤f ′(x).
(3) (hf)′(x) = h(x)f ′(x) + f(x)h′(x).

1Later we need the concept of differentiability on a compact set K. A function is called continuously
differentiable on K, if it may be extended to a continuously differentiable function in some open set containing
K.

5



6 2. DIFFERENTIATION

Consider the dot product and fix x0. We have continuous vector-valued functions rf and rg
which vanish at x0. Define r by

|h|r(x) = f(x) · g(x)− f(x0) · g(x0)− (f(x0)
⊤g′(x0) + g(x0)

⊤f ′(x0))h

where h = x− x0 6= 0. Then, using Schwarz’s inequality and the operator norm, we get

|r(x)| ≤ |h|(‖f ′(x0)‖+ |rf (x)|)(‖g′(x0)‖+ |rg(x)|) + |f(x0)||rg(x)|+ |g(x0)||rf (x)|

which tends to 0 as x tends to x0.
2.1.7 The chain rule. Suppose f : Ω → Rm and g : Ω′ → Rk where Ω′ is an open set in
Rm containing the range of f . If f is differentiable at x and g is differentiable at f(x), then
g ◦ f is differentiable at x and

(g ◦ f)′(x) = g′(f(x))f ′(x).

This is known as the chain rule. Its proof uses the linear approximations of f and g at x
and f(x), respectively.
2.1.8 Differentiable functions are locally Lipschitz. Suppose B is an open ball in Rn,

that f : B → Rm is differentiable, and that there is a number M such that ‖f ′(x)‖ ≤ M
for all x ∈ B. Then f satisfies a Lipschitz condition, i.e.,

|f(x2)− f(x1)| ≤M |x2 − x1|

whenever x1, x2 ∈ B.
If m = 1 we even get f(x2) − f(x1) = f ′(x)(x2 − x1) for some point x on the line

segment joining x1 and x2.

Sketch of proof: Let γ : [0, 1] → B : t 7→ x1 + t(x2 − x1). Consider the function
g : [0, 1] → R : t 7→ (f(x2)− f(x1)) · f(γ(t)). Product rule, chain rule, and the mean value
theorem for one variable imply

|f(x2)− f(x1)|2 = g(1)− g(0) = (f(x2)− f(x1))
⊤f ′(γ(t0))γ

′(t0)

for some t0 ∈ (0, 1). □

2.1.9 Functions with derivative 0 are constant. Any function f with f ′(x) = 0 for all
x in its domain must be constant as long as any two points in its domain can be connected
by a continuous path, i.e., a continuous function γ from [0, 1] to the domain of f such that
γ(0) and γ(1) are the given points.

2.2. Partial derivatives

2.2.1 Partial derivatives. Recall that (e1, ..., en) is the standard basis in Rn. Let f =
(f1, ..., fm)⊤ be a function from Ω to Rm, and x a point in Ω. If 1 ≤ j ≤ n and 1 ≤ ℓ ≤ m,
define

(Djfℓ)(x) = lim
t→0

fℓ(x+ tej)− fℓ(x)

t

if the limit exists.
The numbers (Djfℓ)(x), j = 1, ..., n, ℓ = 1, ...,m are called partial derivatives of f at x.
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2.2.2 Differentiability implies the existence of the partial derivatives. Suppose
f : Ω → Rm is differentiable at x. Then the partial derivatives Djfℓ exist at x and

f ′(x) =

 (D1f1)(x) · · · (Dnf1)(x)
...

...
(D1fm)(x) · · · (Dnfm)(x)

 .

Suppose f : R2 → R is defined by f(0, 0) = 0 and f(x, y) = xy/(x2 + y2) when
(x, y) 6= (0, 0). Then the partial derivatives of f exist at (0, 0) but the function is not
continuous and hence not differentiable there.

This works for y3/(x2 + y2) which is continuous.
2.2.3 Continuously differentiable functions. If f ′ : Ω → L(Rn,Rm) is continuous, then
f is called continuously differentiable. The set of all continuously differentiable functions
from Ω to Rm is denoted by C1(Ω,Rm).

Theorem. f ∈ C1(Ω,Rm) if and only if the partial derivatives Djfℓ : Ω → R, j =
1, ..., n and ℓ = 1, ...,m, are continuous.

We have, in fact, f ′ exists and is continuous at a fixed x0 iff the partial derivatives exist
and are continuous at x0 as the proof actually shows. Therefore split the topic: A sufficient
condition for differentiability & Cont. diff. functions.

However, f ′(x0) may exist even if the partial derivatives are not continuous at x0, as
seen in the example f(x) = x2 sin(1/x) for x 6= 0 and f(0) = 0.

Sketch of proof: If x 7→ f ′(x) is continuous, then so are all the partial derivatives.
Conversely, if all the partial derivatives are continuous, then so is the matrix A of partial
derivatives (given in 2.2.2) as a function of x but we need to show that A(x0) = f ′(x0) for
any x0 ∈ Ω. To this end assume first m = 1 and let h = x− x0 =

∑n
j=1 hjej , v0 = x0, and

vk = x0 +
∑k
j=1 hjej . Then, using the mean value theorem for functions of one variable,

f(x)− f(x0) =

n∑
k=1

(f(vk)− f(vk−1)) =

n∑
k=1

(Dkf)(vk−1 + tkhkek)hk

for tk ∈ (0, 1). Since A(x0)(x − x0)=
∑n
k=1 hkA(x0)ek =

∑n
k=1 hk(Dkf)(x0) the claim

follows using the continuity of x 7→ (Dkf)(x). □

2.2.4 Derivatives of higher order. Let f be a function from Ω to Rm. The partial
derivatives Djfℓ : Ω → R may themselves have partial derivatives Dk(Djfℓ), k = 1, ..., n.
These are called partial derivatives of the second order. If they are continuous then Djfℓ ∈
C1(Ω,R). If this is the case for all j = 1, ..., n and ℓ = 1, ...,m we say that f is twice
continuously differentiable and denote the space of such functions by C2(Ω,Rm).

More generally, Cr(Ω,Rm) is the space of those functions from Ω to Rm for which all
partial derivatives of order up to and including r ∈ N exist and are continuous.
2.2.5 Another mean value theorem. Suppose Ω is an open subset in R2 and f a real-

valued function on Ω for which D1f and D2D1f exist everywhere. If (a, b) ∈ Ω and if u and
v are so small that the rectangle Q with vertices (a, b), (a+u, b), (a, b+v), and (a+u, b+v)
is still in Ω, then there is a point (x, y) ∈ Q such that

f(a+ u, b+ v)− f(a+ u, b)− f(a, b+ v) + f(a, b) = uv(D2D1f)(x, y).



8 2. DIFFERENTIATION

Sketch of proof: Let ϕ : [a, a + u] → R and ψ : [b, b + v] → R be given by ϕ(t) =
f(t, b + v) − f(t, b) and ψ(t) = (D1f)(x, t) for a certain x ∈ (a, a + u). The mean value
theorem for functions of one variable applies to both ϕ and ψ. □

2.2.6 Mixed partial derivatives commute. If f ∈ Ck(Ω,R), j1, ...jk ∈ {1, ..., n}, and π
is a permutation of {1, ..., k}, then

Dj1 ...Djkf = Djπ(1)
...Djπ(k)

f.

Sketch of proof: This follows from the following statement in which we assume that
k = 2 and that n = 2 so that Ω is an open subset of R2. Suppose f ∈ C1(Ω,R) and that
D2D1f exists and is continuous there. These assumptions are somewhat stronger than
Rudin’s to make the statement shorter. Then D1D2f also exists and equals D2D1f in Ω.

Given ε > 0 it follows from 2.2.5 that∣∣∣∣f(a+ u, b+ v)− f(a+ u, b)− f(a, b+ v) + f(a, b)

uv
− (D2D1f)(a, b)

∣∣∣∣ < ε/2

for all sufficiently small but non-zero u and v. Thus, taking v → 0,∣∣∣∣ (D2f)(a+ u, b)− (D2f)(a, b)

u
− (D2D1f)(a, b)

∣∣∣∣ ≤ ε/2 < ε.

□

2.2.7 The gradient. Suppose that all partial derivatives of f : Ω → R exist at x ∈ Ω.
The column vector

(∇f)(x) = ((D1f)(x), ..., (Dnf)(x))
⊤

is called the gradient of f at x.
Thus, if f is differentiable at x, then (∇f)(x) = f ′(x)⊤.

2.2.8 Directional derivatives. Suppose f : Ω → R is differentiable at x and u ∈ Rn.
Then

lim
t→0

f(x+ tu)− f(x)

t
= u · (∇f)(x).

If u is a unit vector this is called the directional derivative of f in direction u at x.
We now define (u · ∇)0 to be the identity operator, even if u = 0 and, recursively,

(u · ∇)jf = u · ∇[(u · ∇)j−1f ]

for j = 1, ..., k provided that f ∈ Ck(Ω,R).
2.2.9 The multi-index notation. A multi-index is an element of Nn0 for some natural

number n. If α is such a multi-index we define

|α| = α1 + ...+ αn and α! = α1!...αn!.

Furthermore, if x ∈ Rn, we set
xα = xα1

1 ...xαn
n .

Finally,
Dαf = Dα1

1 ...Dαn
n f

if f ∈ C |α|(Ω,R).
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Using this notation and taking into account that mixed partial derivatives commute, as
explained in 2.2.6, we obtain by induction and a version of the multinomial theorem (see
B.1) that

[(u · ∇)kf ](x) =

n∑
ℓ1=1

...

n∑
ℓk=1

uℓ1 ...uℓk(Dℓk ...Dℓ1f)(x) =
∑
|α|=k

k!

α!
uα(Dαf)(x)

for k = 1, ..., r provided that f ∈ Cr(Ω,R) and u ∈ Rn.

2.3. Taylor’s theorem and extrema

2.3.1 Taylor’s theorem. Suppose Ω is convex, f ∈ Cr(Ω,R) for some r ∈ N, and x0, x ∈
Ω. Then there exists a number t ∈ (0, 1) such that

f(x) =

r−1∑
k=0

1

k!
[((x− x0) · ∇)kf ](x0) +

1

r!
[((x− x0) · ∇)rf ](x0 + t(x− x0))

=
∑
|α|<r

(Dαf)(x0)

α!
(x− x0)

α +
∑
|α|=r

(Dαf)(x0 + t(x− x0))

α!
(x− x0)

α.

Sketch of proof: Let h = x − x0 and g = f ◦ γ where γ : [0, 1] → Ω : t 7→ x0 + th.
Then, by the chain rule, g′(t) = f ′(γ(t))h = [(h ·∇)f ](γ(t)). Induction shows that g(k)(t) =
[(h · ∇)kf ](γ(t)) for 1 ≤ k ≤ r. Now apply Taylor’s theorem for one variable. □

2.3.2 Extrema. Let x0 be a point in Ω, the domain of a real-valued function f . If there
is a neighborhood U of x0 such that f(x) ≤ f(x0) for all x ∈ U , then we say that f has a
local maximum at x0. If the inequality is strict except for x = x0, then we say that f has a
strict local maximum at x0. The terms local minimum and strict local minimum are defined
analogously. A (strict) local extremum is a point which is either a (strict) local maximum
or minimum.
2.3.3 Critical points. Suppose f is differentiable in its domain. The point x0 is called a

critical point of f , if f ′(x0) = 0.
If the differentiable function f has a local extremum at x0, then x0 is a critical point

of f . Consider g(t) = f(x0 + tek) for k = 1, ..., n. Then g has a local extremum at 0 and
is differentiable at 0, and (Dkf)(x0) = g′(0) = 0. For the latter note that (g(t)− g(0))/t is
non-negative for t > 0 and non-positive for t < 0 in case of a minimum. If g′(0) exists it
must be 0. Thus we have a necessary condition for a point x0 to be a local extremum of f .
2.3.4 The Hessian. If f is twice continuously differentiable the n2 second order partial

derivatives (DjDkf)(x) form a real symmetric matrix, called the Hessian of f at x. We will
denote it by H(x). Taylor’s theorem shows now the existence of a t ∈ (0, 1) such that

f(x0 + h)− f(x0) =
∑
|α|=2

(Dαf)(x0 + th)

α!
hα =

1

2
h⊤H(x0 + th)h

=
1

2
h⊤H(x0)h+

1

2
h⊤
(
H(x0 + tϕ)−H(x0)

)
h.

Since H is continuous we have the following claim: If ϵ > 0 there is a δ > 0 such that

‖H(x0 + h)−H(x0)‖ < ϵ
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whenever h ∈ Rn and |h| < δ. From this we obtain the inequalities

f(x0 + h)− f(x0) ≥
1

2
h⊤H(x0)h− ϵ

2
|h|2 (1)

and

f(x0 + h)− f(x0) ≤
1

2
h⊤H(x0)h+

ϵ

2
|h|2 (2)

It is known from Linear Algebra that the eigenvalues of H(x) are all real and the
corresponding eigenvectors may be chosen to form an orthonormal basis of Rn.
2.3.5 A sufficient criterion for the presence of an extremum. The following theorem

gives a sufficient condition for a point x0 to be a local extremum of f .

Theorem. Let f ∈ C2(Ω,R). Suppose that there is a point x0 such that f ′(x0) = 0
and H(x0) is positive (negative) definite. Then x0 is a strict local minimum (maximum) of
f .

Sketch of proof: Suppose H(x0) is positive definite, i.e., its smallest eigenvalue λ
is positive. Then h⊤H(x0)h ≥ λ|h|2 for all h ∈ Rn. Using this in (1) and choosing there
ϵ = λ/2 gives

f(x0 + h)− f(x0) ≥
1

2
λ|h|2 − λ

4
|h|2 =

1

4
λ|h|2 > 0

for sufficiently small h unless h = 0. Therefore f has a strict local minimum at x0. One
proves in a similar fashion, using (2), that f has a strict local maximum at x0 if H(x0) is
negative definite. □

2.3.6 A sufficient criterion for the absence of an extremum. Let f ∈ C2(Ω,R) and
suppose that there is a point x0 such that f ′(x0) = 0. Let H denote the Hessian of f . Then
the following two equivalent statements hold:

(1) If H(x0) is indefinite, then x0 is not an extremum of f .
(2) If x0 is an extremum of f , then H(x0) is semi-definite.

Sketch of proof: The second statement is the contrapositive of the first. To prove
the first statement assume that H(x0) has both a positive eigenvalue λ+ and a negative
eigenvalue λ− with corresponding normalized eigenvectors ϕ+ and ϕ−. Thus

ϕ⊤+H(x0)ϕ+ = λ+ and ϕ⊤−H(x0)ϕ− = λ−.

Now choose h = sϕ+ and ϵ = λ+/2 in (1) to find

f(x0 + sϕ+)− f(x0) ≥
s2

4
λ+

showing that f can not have a local minimum at x0. Similarly, using h = sϕ− and ϵ = |λ−|/2
in (2), gives

f(x0 + sϕ+)− f(x0) ≤
s2

4
λ−

showing that f can not have a local maximum at x0. □
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2.4. The inverse and implicit function theorems

2.4.1 The geometric series. Suppose a is a real number and |a| < 1. Then
∞∑
k=0

ak =
1

1− a
.

Either from induction or the identity asn = sn+1 − 1 = sn + an+1 − 1 we may see that
sn =

∑n
k=0 a

k = (an+1 − 1)/(a− 1).
2.4.2 Contraction mappings. Let (M,d) be a metric space and T a function from a

subset of M to M . T is called a contraction mapping or a contraction, if there is an α < 1
such that

d(T (x), T (y)) ≤ αd(x, y)

for all x, y ∈M .
It is easy to see that every contraction mapping is continuous.

2.4.3 Fixed points. Let M be a set and T a function from a subset of M to M . A point
x in the domain of T for which T (x) = x is called a fixed point of T .

If T is a contraction, it can have at most one fixed point.
2.4.4 The contraction mapping theorem. Let (M,d) be complete metric space and
T :M →M a contraction mapping. Then there is a unique fixed point of T .

Sketch of proof: Uniqueness of the fixed point follows from 2.4.3.
For existence of a fixed point pick y0 and define y1 = T (y0), y2 = T (y1) and so forth.

Then
d(ym+1, ym) ≤ αd(ym, ym−1) ≤ ... ≤ αmd(y1, y0)

and

d(ym+k, ym) ≤ d(y1, y0)

k−1∑
j=0

αm+j ≤ αm

1− α
d(y1, y0).

It follows that m 7→ ym is a Cauchy sequence and, using completeness, that it has a limit
y ∈M . Since T is continuous, this limit is a fixed point. □

2.4.5 The inverse function theorem. If f ∈ C1(Ω,Rn) and f ′(x0) is invertible, then
there are open sets U and V in Rn such that x0 ∈ U , f ′(x) is invertible for all x ∈ U ,
f(U) = V , and f |U : U → V is bijective. Moreover, the inverse g of f |U is continuously
differentiable on V .

Sketch of proof: Let A = f ′(x0).
(a) Since f ′ is continuous and λ = 1/(2‖A−1‖) > 0 there is an open ball U centered at

x0 such that ‖f ′(x) − f ′(x0)‖ < λ for all x ∈ U . According to 1.1.7, f ′(x) is invertible for
all such x.

(b) Next we show that f |U is injective. For a fixed y ∈ Rn define ϕ : U → Rn by
ϕ(x) = x+A−1(y − f(x)).

Then ϕ is a contraction (‖ϕ′(x)‖ ≤ 1/2 and 2.1.8) and therefore has at most one fixed point
(choose y = f(x) = f(x′)).

(c) Next we prove that V = f(U) is open. Pick z ∈ V so that z = f(x1) for some x1 ∈ U

and choose r such that B(x1, r) ⊂ U . To show that B(z, λr) ⊂ V pick a y ∈ B(z, λr)

and consider the associated function ϕ. Since ϕ maps B(x1, r) to itself |ϕ(x) − x1| ≤
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|ϕ(x)− ϕ(x1)|+ |ϕ(x1)− x1| the contraction mapping theorem 2.4.4 applies and guarantees
the existence of a fixed point x2 of ϕ and hence f(x2) = y.

(d) Define g : V → U to be the inverse of f |U . Pick y, y + v ∈ V . Let x = g(y) and
x+ u = g(y + v). Then f(x) = y and f(x+ u) = y + v and hence, letting B = f ′(x)−1,

|g(y+v)−g(y)−Bv| = |B(v−f ′(x)u)| = |B(f(x+u)−f(x)−f ′(x)u)| ≤ |u|‖B‖|r(x+u)| (3)

for some function r which is continuous at x and vanishes there. With y we associate, as
above, a function ϕ and obtain ϕ(x + u) − ϕ(x) = u − A−1v and, since ϕ is a contraction,
|u−A−1v| ≤ |u|/2. Hence |u| ≤ |v|/λ. This and (3) show that g is differentiable at y.

(e) Now we may apply the chain rule to f(g(y)) = y to obtain g′(y) = f ′(g(y))−1 and
conclude that g′ is continuous (use 1.2.5). □

Discuss f(x) = x+2x2 sin(1/x) to show that continuity of the derivative is “necessary”
for local injectivity.
2.4.6 The implicit function theorem. Let Ω be an open subset of Rn and let f ∈
C1(Ω,Rm) where m < n. Define k = n−m ≥ 1. Suppose

(1) f(
( x0
y0

)
) = 0 for some

( x0
y0

)
∈ Ω with x0 ∈ Rk and y0 ∈ Rm and

(2) f ′(
( x0
y0

)
) = (A1, A2) where A1 ∈ Cm×k, A2 ∈ Cm×m and A2 is invertible.

Then there exist open sets U ⊂ Ω and W ⊂ Rk and a function g ∈ C1(W,Rm) with the
following properties: x0 ∈W , y0 = g(x0),

( x
g(x)

)
∈ U and f(

( x
g(x)

)
) = 0 for all x ∈W , and

g′(x0) = −(A2)
−1A1.

Sketch of proof: To simplify notation we will frequently write f(x, y) in place of
f(
( x
y

)
). Moreover, if we write a vector in Rn as a pair (x, y)⊤, we tacitly assume that

x ∈ Rk and y ∈ Rm. A (rectangular) zero-matrix of any size will be denoted by 0 while an
identity matrix of any size will be denoted by 1.

(a) Define F (x, y) =
( x
f(x,y)

)
, a function from Ω to Rn. If f ′ = (P,Q) with P (x, y) ∈

Rm×k and Q(x, y) ∈ Rm×m, then F ′ =
(
1 0
P Q

)
∈ C0(Ω,Rn). Moreover, F ′(x0, y0) =

(
1 0
A1 A2

)
and is therefore invertible.

(b) We may now apply the inverse function theorem to F . It shows that there are
open sets U , V = F (U) ⊂ Rn such that

( x0
y0

)
∈ U and

(
x0
0

)
= F (

( x0
y0

)
) ∈ V . Moreover,

G = (F |U )−1 : V → U is bijective and continuously differentiable.
Now define W = {x ∈ Rk :

(
x
0

)
∈ V }. Then x0 ∈ W and W is open. If x ∈ W , then(

x
0

)
∈ V and we define

G(
(
x
0

)
) =

( h(x)
g(x)

)
∈ U

with h(x) ∈ Rk and g(x) ∈ Rm. Then
(
x
0

)
= F (

( h(x)
g(x)

)
) =

( h(x)
f(h(x),g(x))

)
. This implies that

h(x) = x and f(x, g(x)) = 0. We have, in particular, F (
( x0

g(x0)

)
) =

(
x0
0

)
= F (

( x0
y0

)
). Since

F is injective it follows that g(x0) = y0.
(c) It remains to show that g ∈ C1(W,Rm) and g′(x0) = −(A2)

−1A1. To see this note
first that, by the inverse function theorem, F ′(x, y) is invertible for every (x, y) ∈ U . This
entails that Q(x, y) is invertible. Thus

G′ = (F ′ ◦G)−1 =
(

1 0
−(Q◦G)−1(P◦G) (Q◦G)−1

)
.
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Now, using G(
(
x
0

)
) =

( x
g(x)

)
, note that g′(x) = −Q(x, g(x))−1P (x, g(x)). Fix x and let

B = Q(x, g(x))−1 and A = −Q(x, g(x))−1P (x, g(x)). Then

|g(x+ h)− g(x)−Ah|
|h|

=
|
( x+h
g(x+h)

)
−
( x
g(x)

)
−
(
1

A

)
h|

|h|

=
|G(
(
x+h
0

)
)−G(

(
x
0

)
)−

(
1 0
A B

)(
h
0

)
|

|h|
.

The right-hand side tends to 0 as |h| → 0 since
(
1 0
A B

)
= G′(

(
x
0

)
). □

2.5. Extrema under constraints

2.5.1 Extrema under constraints. Suppose h ∈ C1(Ω,R). Instead of looking for ex-
trema of h in Ω we will now consider the problem of finding extrema of h in certain non-open
subsets of Ω. To be precise, we want to find extrema of h among those points x in Ω which
also satisfy the constraints f(x) = 0 where f ∈ C1(Ω,Rm).
2.5.2 An example. Find the points closest to the origin on the parabola x + y2 = 3.

Here the function h is given by h(x, y) =
√
x2 + y2. Since the distance has a minimum

if and only if its square has a minimum, we may choose, more simply, h(x, y) = x2 + y2.
The constraint is given by f(x, y) = x+ y2 − 3. In this case, any point (x, y) satisfying the
constraint satisfies x = 3 − y2. Hence the square of the distance of a point (x, y) on the
parabola to the origin is (3−y2)2+y2 = y4−5y2+9. For a minimum we need 4y3−10y = 0

which gives critical points at (3, 0) and (1,±
√
10)/2. The latter are the minima.

While things are not always so easy, this example gives us an important hint, namely
that it is useful to solve the equation f(x, y) = 0 for one of the variables, say x. This gives
us a function x = g(y) so that f(g(y), y) = 0 and we want then to minimize y 7→ H(y) =
h(g(y), y). We need to look for critical points of H, i.e., for zeros of H ′. The chain rule
gives us

h′(g(y), y)
(
g′(y)
1

)
= 0.

The identity f(g(y), y) = 0 gives, in addition,

f ′(g(y), y)
(
g′(y)
1

)
= 0.

Taking these equations simultaneously shows that the 2 × 2-matrix
( h′(g(y),y)

f ′(g(y),y)

)
has 0 as

an eigenvalue 0 with eigenvector
(
g′(y)
1

)
. Therefore the rows are linearly dependent, i.e.,

(h′ + λf ′)(g(y), y) = 0 for some suitable λ. Studying the set where

(h′ + λf ′)(x, y) = 0 (4)

often allows for some progress without solving the constraint equation explicitly.
Returning to our example we find that equation (4) becomes

(2x+ λ, 2y + 2λy) = (0, 0).

The first equation gives x = −λ/2. The second is satisfied for y = 0 or λ = −1. In the
former case the constraint gives x = 3. In the latter case we obtain first x = 1/2 and then,
from the constraint, that y = ±

√
10/2.

2.5.3 Lagrange’s multiplier method. Let h ∈ C1(Ω,R) and f ∈ C1(Ω,Rm) where
m < m+ k = n. Assume that x0 is an extremum of the restriction of h to the set of those
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points x ∈ Ω satisfying f(x) = 0 (so that, in particular, f(x0) = 0). Furthermore, assume
that f ′(x0) has maximal rank m. Then there exists a row λ = (λ1, ..., λm) such that

(h+ λf)′(x0) = 0.

Sketch of proof: After possibly relabelling the independent variables xj we may
assume that f ′(x0) = (A1, A2) where A1 is an m× k-matrix and A2 is an invertible m×m-
matrix. We also write x0 =

( α
β

)
where α ∈ Rk and β ∈ Rm. Similarly, h′(x0) = (b1, b2)

with b⊤1 ∈ Rk and b⊤2 ∈ Rm.
Since A2 is invertible the equation b2 + λA2 = 0 has a unique solution λ = −b2A−1

2

(a row with m components). Hence (h + λf)′(x0) = (b1 + λA1, 0). We need to show that
b1 + λA1 = 0.

By the implicit function theorem there exists a neighborhood W ⊂ Rk of α and a
function g ∈ C1(W,Rm) such that g(α) = β and f(w, g(w)) = 0 for all w ∈ W . The chain
rule gives therefore A1 +A2g

′(α) = 0. Multiplying on the left with λ gives
λA1 − b2g

′(α) = 0. (5)
According to our assumption the function w 7→ H(w) = h(w, g(w)) has a local extremum
at α. Hence

0 = H ′(α) = b1 + b2g
′(α). (6)

Combining equations (5) and (6) shows that indeed b1 + λA1 = 0. □
2.5.4 Example. Which points on the ellipse given as the intersection of the plane x+ y+
2z = 2 and the paraboloid z = x2 + y2 are farthest from and closest to the origin?

(h+ λf)′ = (2x+ λ1 + 2λ2x, 2y + λ1 + 2λ2y, 2z + 2λ1 − λ2).

Hence λ1 = −2x(1 + λ2) = −2y(1 + λ2).
The case λ2 = −1 gives λ1 = 0 and z = −1/2 which is void.
The case λ2 6= −1 gives x = y and, using the constraints, z = 1−x and z = 2x2. Hence

x = 1/2 or x = −1. The former gives the closest and the latter the farthest point on the
ellipse.



CHAPTER 3

The multi-dimensional Riemann integral

3.0.1 n-cells. Given a, b ∈ Rn such that ak ≤ bk we call the set

I =
n

×
k=1

[ak, bk] = {x ∈ Rn : ak ≤ xk ≤ bk for k = 1, ..., n}

a closed n-cell. I is called an open n-cell if

I =
n

×
k=1

(ak, bk) = {x ∈ Rn : ak < xk < bk for k = 1, ..., n}.

The quantity

|I| =
n∏
k=1

(bk − ak)

is called the volume of I.
3.0.2 Partitions. Recall that a partition of a closed interval [a, b] is a finite subset of [a, b]

which contains both a and b. If the number of elements of the partition Pk of [ak, bk] is
m+ 1 we label them so that

ak = pk,0 < pk,1 < . . . < pk,m−1 < pk,m = bk.

Now suppose we have a partition Pk of each of the intervals [ak, bk] defining the n-cell
I =×n

k=1[ak, bk]. Then P = P1 × ... × Pn is called a partition of I. If (p1,j1 , ..., pn,jn) ∈ P
with pk,jk < bk then the n-cell×n

k=1[pk,jk , pk,jk+1
] is included in I and therefore called a

sub-cell of I. The union of all these sub-cells is I and the intersection of the interiors of any
two distinct sub-cells is empty.

If P ∗ = P ∗
1 × ...× P ∗

n is also a partition of I and if Pk ⊂ P ∗
k for k = 1, ..., n, then P ∗ is

called a refinement of P .
For any two partitions P and P ′ of I there is a partition P ∗ which is a refinement of

both P and P ′. P ∗ is called a common refinement of P and P ′.
3.0.3 Riemann sums. Suppose I is a closed n-cell, f : I → R is a bounded function, and
P = {I1, ..., Ir} is a partition of I. For every Ik ∈ P define Mk = sup{f(x) : x ∈ Ik} and
mk = inf{f(x) : x ∈ Ik}. Define

U(P, f) =

r∑
k=1

Mk|Ik| and L(P, f) =

r∑
k=1

mk|Ik|.

Suppose that P and P ′ are partitions of an n-cell I and that P ∗ is a common refinement
of P and P ′. Then

L(P, f) ≤ L(P ∗, f) ≤ U(P ∗, f) ≤ U(P ′, f).

Every sub-cell of P is divided into 2ℓ sub-cells of P ∗ where ℓ ∈ {0, ..., n}.

15
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3.0.4 The Riemann integral. Let I be a closed n-cell and f : I → R a bounded function.
The numbers ∫

I
f = inf{U(P, f) : P is a partition of I}

and ∫
I
f = sup{L(P, f) : P is a partition of I}

are called the upper and lower Riemann integral of f over I.
If upper and lower Riemann integral of f over I coincide, then we say that f is Riemann

integrable over I and we define ∫
I
f =

∫
I
f =

∫
I
f,

the Riemann integral of f over I.
3.0.5 A criterion for integrability. Suppose I is a closed n-cell and f : I → R is a

bounded function. Then f is Riemann integrable if and only if, for every positive ε, there
is a partition P such that

U(P, f)− L(P, f) < ε.

3.0.6 Continuous functions are Riemann integrable. If f is a continuous real-valued
function on the closed n-cell I, then f is Riemann integrable over I.

Sketch of proof: Since f is uniformly continuous on I one may construct an appro-
priate partition. □

3.0.7 Sets of measure zero. A set E ⊂ Rn is said to have measure zero if, for every ε > 0,
there are countably many open n-cells Uj , j ∈ N, such that E ⊂

⋃∞
j=1 Uj and

∑∞
j=1 |Uj | < ε.

Any set with countably many elements has measure zero. Moreover, if each of the
countably many sets Ej , j ∈ N, has measure zero than so does the set

⋃∞
j=1Ej .Needs work!

3.0.8 Examples. Let I = [a1, b1]× ...× [an, bn] be an n-cell and fix j ∈ {1, ..., n}. The sets
{x ∈ I : xj = aj} and {x ∈ I : xj = bj} are called faces of the cell. Each face has measure
zero.

Let E be a closed (n− 1)-cell and f a continuous, real-valued function on E. Then the
graph of f , i.e., the set {

( x
f(x)

)
: x ∈ E} ⊂ Rn, has measure zero. To see this let ε > 0

be given and let {R1, ..., Rk} be a collection of intervals of length ϵ partitioning a closed
interval containing f(E). If {E1, .., EN} is a partition of E so that, for j = 1, ..., N , we have
Mj −mj < ε, then the graph of f |Ej lies in at most two of the sets Ej ×Rk. From this the
conclusion follows.
3.0.9 Oscillation. Suppose E ⊂ Rn and f a bounded function from E to R. For each
x0 ∈ E and δ > 0 define

M(x0, δ) = sup{f(x) : x ∈ E, |x− x0| < δ} and m(x0, δ) = inf{f(x) : x ∈ E, |x− x0| < δ}.

Then
osc(x0) = lim

δ→0
(M(x0, δ)−m(x0, δ))

exists for all x0 ∈ E. It is called the oscillation of f at x0.
The function f is continuous at x0 if and only if osc(x0) = 0.

3.0.10 Riemann integrable functions are nearly continuous. A bounded real-valued
function f defined on a closed n-cell is Riemann integrable if and only if the set of points
where it is not continuous has measure zero.
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Sketch of proof: Denote the domain of f by I and define Bk = {x ∈ I : osc(x) ≥
1/k}, B =

⋃∞
k=1Bk, and C = sup{|f(x)| : x ∈ I}.

Assume that f is integrable. Let P = {I1, ..., IN} be a partition of I such that U(P, f)−
L(P, f) < ε/k and assume that {I1, ...Iℓ} is the set of those cells in P whose interiors intersect
Bk. Then

1

k

ℓ∑
j=1

|Ij | ≤
ℓ∑
j=1

|Ij |(Mj −mj) ≤
N∑
j=1

|Ij |(Mj −mj) = U(P, f)− L(P, f) < ε/k.

Since the faces of the n-cells have measure zero it follows that Bk, and hence B, has measure
zero.

Assume B has measure zero and that ε is given. Then there are open cells Uj , j ∈ N,
such that

B ⊂
∞⋃
j=1

Uj ⊂
∞⋃
j=1

Uj and
∞∑
j=1

|Uj | < ε.

Moreover, if x0 ∈ I \B, then f is continuous at x0. Thus, there is a positive δ such that
|x − x0| < δ implies |f(x) − f(x0)| < ε/4. Choose an open n-cell Vx0 such that x0 ∈ Vx0

and the diameter of Vx0 is less than δ. It follows that
sup{f(x) : x ∈ Vx0

} − inf{f(x) : x ∈ Vx0
} < ε.

Also Vx0 includes an open n-cell Wx0 such that x0 ∈Wx0 and Wx0 ⊂ Vx0 .
We now have that I is covered by the collection of all Uj and Wx0

. Since I is compact,
it is, in fact, covered by a finite collection of the Uj , j = 1, ..., J and the Wxℓ

, ℓ = 1, ..., L
and hence by their corresponding closures. Thus

I =

 J⋃
j=1

(Uj ∩ I)

 ∪

(
L⋃
ℓ=1

(Wxℓ
∩ I)

)
.

Collecting all the k-th components of these cells for each k = 1, ..., n gives rise to a partition
P of I. The corresponding subcells lie either in one of the Uj or in one of the Wxℓ

(or
perhaps in both). The former are small in total volume but Mj −mj maybe as large as 2C.
For the latter Mk −mk < ϵ and their total volume does not exceed |I|. For this partition
we have therefore U(P, f)− L(P, f) < 2Cε+ |I|ε. □

3.0.11 Integrals over bounded sets. Let E be a bounded subset of Rn and f a bounded
function from E to R. If I is a closed n-cell containing E we extend f to a function defined
on I by setting it equal to 0 on I \E. Denoting the extension by fe we define

∫
E
f =

∫
I
fe,

if the latter exists. While E is contained in many n-cells, this definition does not depend
on the choice of such a cell. If E ⊂ I1 and E ⊂ I2, then E ⊂ I1 ∩ I2 = I. Note that I \ Ij
is a finite union of cells where f = 0. We then say that f is Riemann integrable over E.

In particular, if the boundary ∂E of E has measure zero and f : E → R is continuous,
then f is Riemann integrable over E.
3.0.12 Properties of the Riemann integral. Let E be bounded a subset of Rn and

assume that f and g are Riemann integrable over E. Then the following statements hold:
(1)

∫
E
(f+g) =

∫
E
f+
∫
E
g. mk(f)+mk(g) ≤ mk(f+g), Mk(f)+Mk(g) ≥Mk(f+g).

(2)
∫
E
(cf) = c

∫
E
f whenever c ∈ R.

(3) fg is Riemann integrable over E. fg is almost everywhere continuous.
(4) If f ≥ 0 then

∫
E
f ≥ 0.
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(5) |f | is Riemann integrable over E and |
∫
E
f | ≤

∫
E
|f |. |

∫
f | = s

∫
f =

∫
sf where

s = ±1. But sf ≤ |f |.
(6) If E1 ∪ E2 = E and E1 ∩ E2 = ∅, then

∫
E
f =

∫
E1
f +

∫
E2
f . χE = χE1

+ χE2
.

Needs work!
3.0.13 Iterated integrals. Suppose A ⊂ Rn is a closed n-cell, B ⊂ Rm is a closed m-cell,

and f : A × B → R is Riemann integrable over A × B. Then x 7→ φ(x) =
∫
B
f(x, ·) and

x 7→ ψ(x) =
∫
B
f(x, ·) are Riemann integrable. Moreover,∫

A×B
f =

∫
A

φ =

∫
A

ψ. (7)

Sketch of proof: Let P = (A1, ..., AN ) be a partition of A and Q = (B1, ..., BM )
a partition of B giving rise to a partition R of A × B consisting of the cells Aj × Bk. If
mk(x) = inf{f(x, y) : y ∈ Bk} we get φ(x)=

∫
B
f(x, ·) ≥ L(Q, f(x, ·)) =

∑M
k=1mk(x)|Bk|.

If x ∈ Aj we have mk(x) ≥ mj,k = inf{f(x, y) : x ∈ Aj , y ∈ Bk} and hence

inf{φ(x) : x ∈ Aj} ≥
M∑
k=1

mj,k|Bk|.

Thus

L(R, f) =

N∑
j=1

M∑
k=1

mj,k|Aj ||Bk| ≤ L(P,φ) ≤ U(P,φ).

Similarly, U(R, f) ≥ U(P, ψ) ≥ L(P, ψ). Also, since φ ≤ ψ and f is Riemann integrable, we
get that both φ and ψ are Riemann integrable and that (7) holds. □
3.0.14 The change of variables formula. Suppose T : Ω → Rn is an injective, con-

tinuously differentiable function. Assume further that T ′ is everywhere invertible so that
detT ′(x) 6= 0 for all x ∈ Ω. If f : T (Ω) → R or f ◦T | detT ′| : Ω → R is Riemann integrable,
then so is the other one and ∫

T (Ω)

f =

∫
Ω

f ◦ T | detT ′|.

3.0.15 Differentiating an integral. Let f : [a, b] × [c, d] → R be a continuous function
such that D2f is also continuous. Define F (y) =

∫
[a,b]

f(·, y) for y ∈ (c, d). Then

F ′(y) =

∫
[a,b]

(D2f)(·, y).

Sketch of proof: For y > y0 we have F (y) − F (y0) =
∫
[a,b]

∫
[y0,y]

(D2f)(x, u)dudx.
Hence, given ε > 0, ∣∣∣∣∣F (y)− F (y0)

y − y0
−
∫
[a,b]

(D2f)(·, y0)

∣∣∣∣∣ < ε(b− a)

when |y − y0| is sufficiently small. This uses that D2f is, in fact, uniformly continuous.∫
[a,b]

∫
[y0,y]

|(D2f)(x, u)−D2f(x, y0)| dudx < ε(b− a)(y − y0)

when |u− y0| ≤ |y − y0| < δ. □



CHAPTER 4

Integration of differential forms

Recall that Ω always denotes an open subset of Rn.

4.1. Integration along paths

4.1.1 Smooth paths. A smooth path in Ω is a continuously differentiable function from
Q1 = [0, 1] to Ω.
4.1.2 Integration along a smooth path. Given a smooth path γ in Ω, we may integrate

a list ω = (ω1, ..., ωn) of continuous real-valued functions defined on Ω along γ by defining∫
γ

ω =

∫
[0,1]

(ω ◦ γ)γ′ =
∫
[0,1]

n∑
j=1

ωj(γ(t))γ
′
j(t)dt.

For example, if ω(x) = (x2, x1, 0) and γ(t) = (2t3, 3t, t2)⊤, then∫
γ

ω =

∫
[0,1]

((3t)(6t2) + (2t3)3 + 0(2t))dt = 6.

If ω(x) = (0, x1) and γ(t) = (a cos(2πt), b sin(2πt))⊤, then∫
γ

ω =

∫
[0,1]

2πab cos(2πt)2dt = πab.

4.2. Integration over surfaces

4.2.1 Smooth surfaces. A smooth surface in Ω is a continuously differentiable function
from Q2 = {(x, y) : 0 ≤ x, 0 ≤ y, x+ y ≤ 1} to Ω.
4.2.2 Integration over a smooth surface. Given a smooth surface ϕ in Ω we define,

for α = (α1, α2) ∈ {1, ..., n}2, the Jacobian determinants

J(ϕ, α) = det

(
D1ϕα1

D2ϕα1

D1ϕα2 D2ϕα2

)
.

There are n2 choices of α and the J(ϕ, α) are continuous functions from Q2 to R. Note that
J(ϕ, (k, k)) = 0 and J(ϕ, (k, ℓ)) = −J(ϕ, (ℓ, k)) for ℓ, k = 1, ..., n.

Now we define the integral of an array of n2 continuous real-valued functions ωj,k,
j, k = 1, ..., n, defined on Ω by∫

ϕ

ω =

∫
Q2

n∑
j=1

n∑
k=1

ωj,k ◦ ϕ J(ϕ, (j, k)) =
∫
Q2

∑
1≤j<k≤n

(ωj,k − ωk,j) ◦ ϕ J(ϕ, (j, k)).

19
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For example, if

ω(x) =

x1 x3 0
0 x2 x1
x2 0 x3

 and ϕ(s, t) =

sin(πs) cos(2πt)
sin(πs) sin(2πt)

cos(πs)

 ,

then the non-trivial Jacobians are J((1, 2)) = 2π2 sin(πs) cos(πs), J((3, 1)) = 2π2 sin(πs)2 sin(2πt),
and J((2, 3)) = 2π2 sin(πs)2 cos(2πt). Thus∫

ϕ

ω =

∫
[0,1]

∫
[0,1−s]

2π2 sin(πs)dt ds = 2π.

This is half of the surface area of the unit sphere. To see why let

N = (J(2, 3), J(3, 1), J(1, 2))⊤

and note that N = 2π2 sin(πs)ϕ and |ϕ| = 1. Hence
∫
γ
ω =

∫
Q2 ϕ ·N =

∫
Q2 |N | as claimed

in calculus books.

4.3. The general case

4.3.1 The standard k-simplex. Suppose k ∈ N. Then the set Qk = {x ∈ Rk : 0 ≤
xj , x1 + ... + xk ≤ 1} is called the standard k-simplex in Rk. We also define the standard
0-simplex to be Q0 = R0 = {0}.
4.3.2 k-surfaces. If k ∈ N we define a k-surface in Ω to be a function ϕ ∈ C1(Qk,Ω). A
0-surface in Ω is a point in Ω. Qk is called the parameter domain of ϕ.
4.3.3 Multi-indices. We have introduced the concept of a multi-index in 2.2.9. In this

chapter we need a slightly different kind of object. Henceforth, given n, k ∈ N, we call a list
of k elements from {1, ..., n}, written as a row, a k-index of type n. The set of k-indices of
type n is denoted by V kn . It has precisely nk elements.

The set of functions from V kn to R is an nk-dimensional vector space. It has a standard
basis eα, α ∈ V kn , defined by eα(β) = 1 if α = β and eα(β) = 0 if α 6= β. Check linear
independence and spanning: Suppose 0 =

∑
α∈V k

n
cαeα. Evaluate at β to see that cβ = 0,

showing linear independence. To show that the eα span, let r be an arbitrary function from
V kn to R. Then r =

∑
α∈V k

n
r(α)eα. This construction is similar to the construction of the

standard base in Rn= R{1,...,n}.
A k-index β is called a basic k-index if β1 < β2 < ... < βk. There are

(
n
k

)
basic k-indices

in V kn if k ≤ n and none if k > n. Choose k distinct numbers and order them. The set of all
basic k-indices of type n is denoted by Ikn. When k = 1 we have V 1

n = I1n.
4.3.4 The vector space W k

n (Ω). The functions ω : V kn → C0(Ω,R) form a real vector
space upon using the standard definition of sums and constant multiples of functions. This
vector space will be denoted by W k

n (Ω). In other words, an element of W k
n (Ω) assigns to

each k-index α of type n a function ωα ∈ C0(Ω,R). Clearly, we may represent an element
of W k

n (Ω) by ω =
∑
α∈V k

n
ωαeα.

We also define W 0
n(Ω) = C0(Ω,R).
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4.3.5 Jacobians. Given n continuously differentiable real-valued functions ϕ1, ..., ϕn de-
fined on Qk and a k-index α = (α1, ..., αk) of type n we define the Jacobian

J(ϕ, α) = det

D1ϕα1
· · · Dkϕα1

...
...

D1ϕαk
· · · Dkϕαk


which is a continuous function on Qk.
4.3.6 Integration over a k-surface. Suppose ϕ is a k-surface in Ω and ω ∈ W k

n (Ω).
Then we define ∫

ϕ

ω =

∫
Qk

∑
α∈V k

n

ωα ◦ ϕ J(ϕ, α)

if k > 0. If k = 0 we set
∫
ϕ
ω = ω(ϕ(0)).

Integration over k-surfaces is linear, i.e.,∫
ϕ

(c1ω1 + c2ω2) = c1

∫
ϕ

ω1 + c2

∫
ϕ

ω2

when c1, c2 ∈ R and ω1, ω2 ∈W k
n (Ω).

4.3.7 Differential k-forms. Discuss ω =
(
f 0
0 g

)
, ω̂ =

( 0 f
f 0

)
, and ω̃ =

(
0 0
0 0

)
. We call two

functions ω1, ω2 ∈W k
n (Ω) equivalent, if

∫
ϕ
ω1 =

∫
ϕ
ω2 for all k-surfaces ϕ in Ω. This relation

is an equivalence relation and will be denoted by ω1 ∼ ω2.

Definition. Suppose k ∈ N. A differential form ω of order k in Ω, or simply a k-form
in Ω, is an equivalence class of functions ω̃ ∈W k

n (Ω). A differential form of order 0 in Ω, or
simply a 0-form in Ω is a continuous real-valued function on Ω.

A k-form in Ω assigns to each k-surface in Ω a real number. If ω̃ is a representative of
ω and ϕ is a k-surface, we shall write ω(ϕ) =

∫
ϕ
ω̃ or

∫
ϕ
ω =

∫
ϕ
ω̃.

The differential forms of order k form a real vector space. One needs to show addition
and scalar multiplication are well-defined: Let [ω̌] = [ω̂] and [ψ̌] = [ψ̂]. By linearity∫

Φ

(ψ̌ + ω̌) =

∫
Φ

(ψ̂ + ω̂).

Then go through all nine axioms: associative, commutative, zero, negatives, two distributive
laws, (c1c2)ω = c1(c2ω), 1ω = ω.
4.3.8 Elementary properties of k-forms. If α is a k-index and π is a permutation of
{1, ..., k} we define απ = (απ(1), ..., απ(k)).

Suppose f ∈ C0(Ω,R), α ∈ V kn , and π is a transposition of {1, ..., k}. Then feα ∼
−feαπ

. If αj = αℓ for some j 6= ℓ then feα ∼ 0. If ω̃ ∈W k
n (Ω) with k > n, then ω̃ ∼ 0.

Suppose ω1 and ω2 are k-forms in Ω and ϕ is a k-surface in Ω. Let c be real number.
Then the following statements are true.

(1)
∫
ϕ
(ω1 + ω2) =

∫
ϕ
ω1 +

∫
ϕ
ω2.

(2)
∫
ϕ
cω = c

∫
ϕ
ω.

4.3.9 Basic representatives of k-forms. Suppose k ≤ n. If the entries of the k-index
α are pairwise distinct, there is a permutation π of {1, ..., k} such that β = απ is a basic
k-index. Since eα ∼ (−1)πeβ we can, for any k-form ω, choose a representative ω̃ such that
ω̃α = 0 unless α is a basic k-index. Such a representative is called a basic representative of
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ω. If k > n and ω is a k-form, then ω = 0. We will use the notation [α] for απ when this is
the basic k index associated with α.

Theorem. Suppose k ≤ n. Let ω be a k-form in Ω and ω̃ a basic representative of ω.
Then ω = 0 if and only if ω̃α = 0 for every α ∈ Ikn (and, indeed, in V kn ). In other words, the
equivalence class of representatives of a k-form contains precisely one basic representative.

Sketch of proof. Suppose, by way of contradiction, that ω̃α(x0) > 0 for some x0 ∈ Ω
and some basic k-index α. Then there is a δ > 0 such that |ω̃α(x) − ω̃α(x0)| < ω̃α(x0)/2
whenever |x−x0| < δ. Hence ω̃α(x) > ω̃α(x0)/2 > 0 for x ∈ B(x0, δ). Construct a k-surface
ϕ in a sufficiently small neighborhood of x0 such that J(ϕ, α) = 1 and J(ϕ, β) = 0 for all
basic k-indices β 6= α. Then

∫
ϕ
ω =

∫
Qk ω̃α ◦ ϕ J(ϕ, α) > 0, the desired contradiction. Let

ϕ : Qk → Ω be given by ϕ(u) = x0 + ν
∑k
j=1 ujeαj . Note that |ϕ(u)− x0| ≤ νk. Hence, for

ν = δ/k and u ∈ Qk we have ω̃α(ϕ(u)) > 0. □

In the following ∧, d and variable changes are defined using basic representatives. Can
we extend to arbitrary representatives?
4.3.10 The wedge product of differential forms. Suppose p, q ∈ N, ω is a p-form, and
λ is a q-form in Ω. Let ω̃ be the basic representative of ω and λ̃ the basic representative of
λ, i.e,

ω̃ =
∑
α∈Ipn

ω̃αeα and λ̃ =
∑
β∈Iqn

λβeβ .

Then we define the (p+ q)-form ω ∧ λ to be the form represented by∑
α∈Ipn

∑
β∈Iqn

ω̃αλ̃βe(α,β).

We also define the product of 0-forms with k-forms: If ω and λ are both 0-forms then ω ∧ λ
is the 0-form given by the product of the continuous functions ω and λ. If ω is a 0-form and
λ is a q-form, then

ω ∧ λ =
∑
β∈Iqn

ωλβeβ .

Similarly, if ω is a p-form and λ is a 0-form, then

ω ∧ λ =
∑
α∈Ipn

ωαλeα.

Note that ω ∧ λ = 0 if p+ q > n.
The wedge product of differential forms is associative and left and right distributive but

not commutative.To prove associativity one has to first write ω ∧ λ and λ∧ τ in basic form,
which introduces parities into the sums. These can then be undone after looking at both
(ω ∧ λ)∧ τ and ω ∧ (λ∧ τ). In fact, ω ∧ λ = (−1)pq λ∧ ω. After p transpositions of βq with
each αj we have (β1, ...βq−1, α, βq). Repeat q − 1 times for a total of pq transpositions to
arrive at (α, β).

Note that, if α ∈ Ikn, then
eα = eα1

∧ ... ∧ eαk
.

4.3.11 Differentiation of differential forms. We say a differential form of order k is of
class Cr if the functions ωα in its basic representation

∑
α∈Ikn

ωαeα are elements of Cr(Ω,R).
A form of class Cr is called an r times continuously differentiable form.
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We will now define an operator d which maps k-forms of class Cr to (k + 1)-forms of
class Cr−1.

If f is a 0-form of class Cr in Ω we define df to be the 1-form with basic representative
n∑
j=1

(Djf)ej

using that I1n = {1, ..., n}. df is of class Cr−1.
If k ≥ 1 and ω is a k-form of class Cr with basic representative

ω̃ =
∑
α∈Ikn

ω̃αeα,

we define dω to be the (k + 1)-form represented by∑
α∈Ikn

n∑
j=1

(Djω̃α)e(j,α).

4.3.12 Examples. The following are important examples.
(1) Consider x 7→ xj as a 0-form. Then d(x 7→ xj) has representative ej . It is

therefore customary to write dxj for ej and representatives of general 1-forms in Ω
are often written as

∑n
j=1 ωjdxj , where the ωj are continuous real-valued functions

on Ω. This convention makes no distinction between a variable xj and the function
x 7→ xj . We will not use it in these notes.

(2) d2(x 7→ xj) = d(d(x 7→ xj) = 0.
(3) Let ϕ be a 1-surface and f a 0-form of class C1. Then∫

ϕ

df =

∫
[0,1]

n∑
j=1

(Djf)(ϕ)ϕ
′
j =

∫
[0,1]

(f ◦ ϕ)′ = f(ϕ(1))− f(ϕ(0)).

This is called the fundamental theorem of line integrals.
(4) Let ω be the 1-form with basic representative x 7→ xpeq, 1 ≤ p, q ≤ n. Then dω is

represented by ep,q. In particular, dω = 0 if p = q.
4.3.13 Differentiation rules. Suppose ω is a differentiable p-form and λ is a differentiable
q-form in Ω. Then the following statements hold:

(1) If p = q, then d(ω + λ) = dω + dλ.
(2) If c ∈ R, then d(cω) = cdω.
(3) d(ω ∧ λ) = (dω) ∧ λ+ (−1)pω ∧ (dλ) = (dω) ∧ λ+ (−1)pq(dλ) ∧ ω.

Moreover, d2 = 0 on twice continuously differentiable forms.
4.3.14 Products of 1-forms and determinants. Suppose T ∈ C1(Ω,Ω′) where Ω′ is an

open set in Rm, k ≤ m, and α ∈ Ikm. Then dT1, ..., dTm are 1-forms in Ω and

dTα1 ∧ ... ∧ dTαk
=
∑
β∈Ikn

J(T, α, β)e
(n)
β

where

J(T, α, β) = det

Dβ1
Tα1

· · · Dβk
Tα1

...
...

Dβ1Tαk
· · · Dβk

Tαk

 ,

an extension of our notation introduced in 4.3.5.
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Sketch of proof: If k > n we have 0 on both sides of our identity. Hence assume
k ≤ n in the following and suppose 1 ≤ p ≤ k and 1 ≤ q ≤ n. Then one proves by induction
that

dTα1 ∧ ... ∧ dTαk
=

n∑
m1=1

...

n∑
mk=1

(Dm1Tα1)...(Dmk
Tαk

) e(n)m1
∧ ... ∧ e(n)mk

.

If the elements of (m1, ...,mk) are not pairwise distinct the corresponding summand is 0.
Each of the remaining lists (m1, ...,mk) is obtained by a permutation π of some β ∈ Ikn, i.e.,

(m1, ...,mk) = (π(β1), ..., π(βk)).

Therefore
dTα1

∧ ... ∧ dTαk
=
∑
β∈Ikn

∑
π∈Sβ

(−1)π(Dπ(β1)Tα1
)...(Dπ(βk)Tαk

)e
(n)
β

where Sβ is the group of all permutations on β = (β1, ..., βk). Now recall a standard
definition of the determinant:

detA =
∑

π∈S{1,...,k}

(−1)πa1,π(1)...ak,π(k).

□
4.3.15 Changing variables. Suppose T ∈ C1(Ω,Ω′) where Ω′ is an open set in Rm. If ω

is a 0-form we set ωT = ω ◦ T . If k ∈ N and ω is a k-form in Ω′ with basic representative
ω̃ =

∑
α∈Ikm

ω̃αe
(m)
α

we define a k-form ωT in Ω by setting

ω̃T =
∑
α∈Ikm

(ω̃α ◦ T )dTα1 ∧ ... ∧ dTαk
.

According to 4.3.14 we have

ω̃T =
∑
β∈Ikn

( ∑
α∈Ikm

(ω̃α ◦ T )J(T, α, β)
)
e
(n)
β .

Example: Suppose n = 2, m = 3, k = 2, T (x1, x2) = (x21 + x22, x1x2, x2)
⊤, and ω(y) =

y2y3e
(3)
1,2 + y1 e

(3)
2,3. dT1 ∧ dT2 = 2(x21 − x22)e

(2)
1,2, dT1 ∧ dT3 = 2x1e

(2)
1,2, and dT2 ∧ dT3 = x2e

(2)
1,2.

Then ωT = (2x31x
2
2 − 2x1x

4
2 + x21x2 + x32)e

(2)
1,2.

4.3.16 Basic properties of variable changes. Let Ω and Ω′ be open sets in Rn and
Rm, respectively. Suppose that T ∈ C1(Ω,Ω′) and that ω is a p-form and λ a q-form in Ω′.
Then

(1) If p = q then (ω + λ)T = ωT + λT .
(2) (ω ∧ λ)T = ωT ∧ λT .
(3) If ω is of class C1 and T ∈ C2(Ω,Ω′) then ωT is of class C1 and d(ωT ) = (dω)T .

Sketch of proof: Let ω and λ have the basic representatives
∑
α∈Ipm ωαe

(m)
α and∑

β∈Iqm λβe
(m)
β , respectively.

To prove the first claim is simple. For the second note that
ω ∧ λ =

∑
α∈Ipm

∑
β∈Iqm

ωαλβ(−1)πα,βe(m)
γ
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where γ = [α, β]. Therefore

(ω ∧ λ)T =
∑
α∈Ipm

∑
β∈Iqm

(ωα ◦ T )(λβ ◦ T )(−1)πα,βdTγ1 ∧ ... ∧ dTγp+q

=
∑
α∈Ipm

∑
β∈Iqm

(ωα ◦ T )(λβ ◦ T )dTα1
∧ ... ∧ dTβq

.

On the other hand, using the distributive laws and the fact that dT ∧ f = f ∧ dT for any
0-form f and 1-form dT ,

ωT ∧ λT =
∑
α∈Ipm

(ωα ◦ T ) dTα1
∧ ... ∧ dTαp

∧ λT

=
∑
α∈Ipm

∑
β∈Iqm

(ωα ◦ T )(λβ ◦ T )dTα1
∧ ... ∧ dTαp

∧ dTβ1
∧ ... ∧ dTβq

.

First prove the third claim when ω = f is a 0-form with the help of the chain rule. For
the general case we only have to consider ω = fe

(m)
α . Then ωT = (f ◦ T )dTα1 ∧ ... ∧ dTαp

and dω =
∑m
j=1(Djf)(−1)πj,αe

(m)
[j,α]. Now use the product rule from 4.3.13 and d2 = 0 to

obtain
d(ωT ) = d(f ◦ T ) ∧ dTα1

∧ ... ∧ dTαp

and undoing the ordering

(dω)T =

m∑
j=1

((Djf) ◦ T )dTj ∧ dTα1
∧ ... ∧ dTαp

.

As above the chain rule gives that
∑m
j=1((Djf) ◦ T )dTj = d(f ◦ T ) which completes the

proof. □

4.3.17 Compositions of variable changes. Suppose Ω, Ω′, and Ω′′ are open sets in Rn,
Rm, and Rp, respectively. Let T ∈ C1(Ω,Ω′) and S ∈ C1(Ω′,Ω′′) and ω a k-form in Ω′′.
Then ST = S ◦ T ∈ C1(Ω,Ω′′) and

ωST = (ωS)T .

Sketch of proof: This is trivial when k = 0. If ω = e
(p)
q where q ∈ {1, ..., p}, then

ωS =
∑m
j=1(DjSq)e

(m)
j and

(ωS)T =

m∑
j=1

((DjSq) ◦ T )dTj =
m∑
j=1

((DjSq) ◦ T )
n∑
ℓ=1

DℓTje
(n)
ℓ

=

n∑
ℓ=1

( m∑
j=1

((DjSq) ◦ T )DℓTj
)
e
(n)
ℓ =

n∑
ℓ=1

Dℓ(Sq ◦ T )e(n)ℓ = ωST .

The general case follows now with the aid of 4.3.16: In

ω =
∑
α∈Ikp

ωαe
(p)
α =

∑
α∈Ikp

ωα ∧ e(p)α1
∧ ... ∧ e(p)αk

we may treat each summand and each factor separately. □



26 4. INTEGRATION OF DIFFERENTIAL FORMS

4.3.18 Variable changes and integration. Suppose Ω and Ω′ are open sets in Rn and
Rm, respectively. If ω is a k-form in Ω′, ϕ is a k-surface in Ω and T ∈ C1(Ω,Ω′), then ωT
is a k-form in Ω, T ◦ ϕ is a k-surface in Ω′ and∫

T◦ϕ
ω =

∫
ϕ

ωT .

Sketch of proof: First suppose n = k, that ϕ = 1, the identity on Qk, and that
ω = fe

(m)
α . Then T ◦ ϕ = T |Qk is a k surface in Ω′ and∫
1

ωT =

∫
1

(f ◦ T )J(T, α, (1, ..., k))e(k)1,...,k =

∫
Qk

(f ◦ T )J(T, α, (1, ..., k)) =
∫
T◦1

ω.

Using the linearity of the integral we have that
∫
1
ωT =

∫
T
ω for all k-forms in Ω′. Now

note that ∫
T◦ϕ

ω =

∫
1

ωT◦ϕ =

∫
1

(ωT )ϕ =

∫
ϕ

ωT .

□

4.4. Stokes’ theorem

4.4.1 Chains. Let Sk(Ω) denote the set of k-surfaces in Ω. A k-chain in Ω is a function
f : Sk(Ω) → Z such that f(s) = 0 for all but finitely many s ∈ Sk(Ω). We define the sum
of two k-chains f and g by (f + g)(s) = f(s) + g(s) and an integer multiple of a k-chain by
(rf)(s) = rf(s) when r ∈ Z. Then f + g and rf are again k-chains in Ω.

Defining f(s0) = 1 and f(s) = 0 for s 6= s0 shows that we may consider a k-surface as
a k-chain. A function f defined this way will be denoted by [s0]. We may now represent
k-chains as n1[s1] + ...+ nℓ[sℓ] with integers nj and k-surfaces sj , j = 1, ..., ℓ.

The set of k-chains Sk(Ω) → Z is denoted by Ck(Ω).
A k-chain n1[s1] + ...+ nℓ[sℓ] is of class Cr, if each of the k-surfaces s1, ..., sℓ is of class

Cr for some r in N.
4.4.2 Integration over chains. Let γ be a k-chain in Ω and ω a k-form in Ω. Since
γ =

∑ℓ
j=1 nj [ϕj ] with k-surfaces ϕj we define

ω(γ) =

∫
γ

ω =

ℓ∑
j=1

nj

∫
ϕj

ω.

4.4.3 Boundaries of affine simplices. Suppose 1 ≤ ℓ ≤ k. Recall that the points e(ℓ)j ,
j = 1, ..., ℓ form the standard basis of Rℓ. We define also e(ℓ)0 to be the zero vector in Rℓ.
Thus the points e(ℓ)j , j = 0, ..., ℓ are the vertices of Qℓ.

Let p0, p1, ..., pℓ be points in Rk. The ℓ-surface

Qℓ → Rk : (u1, ..., uℓ) 7→ p0 +

ℓ∑
j=1

uj(pj − p0)

is called an affine ℓ-simplex in Rk which we denote by 〈p0, ..., pℓ〉. Note that pj is the image
of e(ℓ)j . For the associated chain we will write [p0, ..., pℓ] instead of [〈p0, ..., pℓ〉].
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An affine ℓ-simplex 〈p0, ..., pℓ〉 has ℓ+1 faces 〈p0, ...,��pj , ..., pℓ〉, j = 0, ..., ℓ. Each of these
faces is an affine (ℓ− 1)-simplex and the chain

k∑
j=0

(−1)j [p0, ...,��pj , ..., pℓ]

is called the boundary of [p0, ..., pℓ].
In particular, 1(ℓ) = 〈e(ℓ)0 , ..., e

(ℓ)
ℓ 〉 is the identity function on Qℓ and its boundary is

∂1(ℓ) =

k∑
j=0

(−1)j [σ
(ℓ)
j ]

where σ(ℓ)
j = 〈e(ℓ)0 , ...,�

�e(ℓ)j , ..., e
(ℓ)
ℓ 〉. Note that σ(ℓ)

j maps Qk−1 into (but not onto) Qk.
4.4.4 Boundaries of surfaces and chains. If ϕ is a k-surface in Ω, we define the boundary
∂[ϕ] of [ϕ] by

∂[ϕ] =

k∑
j=0

(−1)j [ϕ ◦ σ(ℓ)
j ]

Thus ∂[ϕ] is a (k − 1)-chain in Ω.
Finally, if ψ =

∑ℓ
j=1 nj [ϕj ] is any chain in Ck(Ω) we define its boundary as

∂ψ =

ℓ∑
j=1

nj∂[ϕj ].

4.4.5 Examples. Suppose k = 3 and ℓ = 2. Let p0 = (0, 0, 0)⊤, p1 = (1, 1, 1)⊤, and p2 =
(0, 1, 1)⊤. The 2-surface 〈p0, p1, p2〉 represents a triangle in R3. The boundary ∂[p0, p1, p2]
consists of the three edges of the triangle. Also, ∂(∂[p0, p1, p2]) = 0.

Find the boundary of the 2-surface

ϕ(s, t) =

sin(πs) cos(2πt)
sin(πs) sin(2πt)

cos(πs)

 , (s, t) ∈ Q2.

Plot the surface and its boundary.
4.4.6 ∂2 = 0. For any k-chain ψ we have ∂2ψ = ∂(∂ψ) = 0.

Sketch of proof: It is enough to prove this claim when ψ is a k-surface. Then

∂2[ψ] =

k∑
j=0

(−1)j∂[ψ ◦ σ(k)
j ]

where, as before, σ(k)
j = 〈e(k)0 , ...,�

�e(k)j , ..., e
(k)
k 〉. Hence

∂2[ψ] =

k∑
j=0

(−1)j
(j−1∑
ℓ=1

(−1)ℓ[ψ ◦ σ(k)
ℓ,j ] +

k∑
ℓ=j+1

(−1)ℓ−1[ψ ◦ σ(k)
j,ℓ ]
)

where, for p < q,
σ(k)
p,q = 〈e(k)0 , ...,

�
�e(k)p , ...,

�
�e(k)q , ..., e

(k)
k 〉.
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Hence
∂2[ψ] =

∑
1≤ℓ<j≤k

(−1)j+ℓ[ψ ◦ σ(k)
ℓ,j ] +

∑
1≤j<ℓ≤k

(−1)j+ℓ−1[ψ ◦ σ(k)
j,ℓ ] = 0. □

Rudin’s proof is not quite complete and it is unclear how to complete it.

4.4.7 The fundamental theorem of calculus. Suppose n = 1, Ω = R and a, b ∈ R
with a < b. Let ϕ be the 1-chain [a, b] given by the 1-surface 〈a, b〉, i.e., by [0, 1] → R : t 7→
a + (b − a)t. Also, let f be a continuously differentiable 0-form in R. Then df is a 1-form
represented by f ′e1 and the following identity, called the fundamental theorem of calculus,
holds: ∫

ϕ

df =

∫
∂ϕ

f.

Sketch of proof: If we use the letter ϕ also for the function 〈a, b〉 well-known results
from calculus show∫

ϕ

df =

∫
[0,1]

f ′(ϕ)ϕ′ =

∫
[0,1]

(f ◦ ϕ)′ = f(ϕ(1))− f(ϕ(0))

and, since ∂ϕ = [ϕ(1)]− [ϕ(0)]∫
∂ϕ

f =

∫
ϕ(1)

f −
∫
ϕ(0)

f = f(ϕ(1))− f(ϕ(0)).

□

4.4.8 Stokes’ theorem. Let Ω be an open subset of Rn and k ∈ N. If ϕ is a k-chain in Ω
and ω is a (k − 1)-form of class C1 in Ω, then∫

ϕ

dω =

∫
∂ϕ

ω. (8)

Sketch of proof: Note that dω is a k-form in Ω and that ∂ϕ is a chain of (k − 1)-
surfaces.

We begin by showing the claim when n = k, Qk ⊂ Ω, ϕ = 1 on Qk, and ω = fe
(n)
α

where f ∈ C1(Ω,R) and α = (1, ..., �r, ..., k).
Recall that with σj = 〈e0, ...,��ej , ..., ek〉 the boundary of ϕ = 1 is given by

∑k
j=0(−1)j [σj ].

Here we have
σ0 = (1− t1 − ...− tk−1, t1, t2, ..., tk−1)

⊤

and, if j 6= 0,
σj(t) = (t1, ..., tj−1, 0, tj , ..., tk−1)

⊤.

Therefore

J(σj , α) =


(−1)r−1 if j = 0

1 if j = r,
0 if 0 6= j 6= r.

For j = 0 delete row r in (σ(0))′. For r > 1 flip row 1 with row 2, then 2 with 3 until it
becomes row r. This creates a matrix for which it is easy to see that the determinant is −1.
Since r − 2 flips are necessary we get the claim for j = 0. For j = r one has an identity
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matrix. Otherwise the matrix has a row of zeros.
Hence we get for the right-hand side of (8)∫

∂1

fe(n)α =

k∑
j=0

(−1)j
∫
σj

fe(n)α = (−1)r−1

∫
Qk−1

f ◦ σ(0) + (−1)r
∫
Qk−1

f ◦ σ(r). (9)

To compute the left-hand side note first that d(feα) = (Drf)er,α and that J(1, (r, α)) =
(−1)r−1. Hence

∫
1
(Drf)er,α = (−1)r−1

∫
Qk Drf . To evaluate this we use iterated integrals

and integrate first over the r-th variable in Qk. Fix a point t = (t1, ..., tk−1) ∈ Qk−1. Then
(t1, ..., tr−1, s, tr, ..., tk−1) is in Qk precisely if s is in [0, s0] where s0 = 1 − t1 − ... − tk−1.
Thus, using the fundamental theorem of calculus,∫

1

(Drf)er,α = (−1)r−1

∫
Qk−1

∫
[0,s0]

(Drf)(t1, ..., tr−1, s, tr, ..., tk−1) ds d(t1, ..., tk−1)

= (−1)r−1

∫
Qk−1

(
f(t1, ..., tr−1, s0, tr, ..., tk−1)− f(t1, ..., tr−1, 0, tr, ..., tk−1)

)
= (−1)r−1

∫
Qk−1

(
f((σ0 ◦ T )(t)))− f(σr(t)

)
when T : Rk−1 → Rk−1 is the linear transformation defined by the requirement (σ0◦T )(t) =
(t1, ..., tr−1, s0, tr, ..., tk−1). T (t) = (t2, ..., tr−1, 1− t1 − ...− tk−1, tr, ..., tk−1). Since T ′ = T
and | detT | = 1 we have, according to 3.0.14,

∫
Qk−1 f ◦ σ0 ◦ T | detT | =

∫
Qk−1 f ◦ σ0. Hence∫

1

(Drf)er,α = (−1)r−1

∫
Qk−1

(f ◦ σ0 − f ◦ σr). (10)

Finally note that (9) and (10) are identical to finish the proof under the current special
circumstances.

The claim also holds for a general (k − 1)-form ω by the linearity of the integrals.
Next suppose that ϕ is a general k-surface in Ω without assuming n = k. Hence see

footnote on p.5 there is an open set U ⊂ Rk and including Qk such that ϕ can be extended
to U as a continuously differentiable function. If we call the extension T we have ϕ = T ◦ 1
where 1 is the identity function on Qk. We have now, using 4.3.18, part (3) of 4.3.16, and
what we just proved,∫

ϕ

dω =

∫
T◦1

dω =

∫
1

(dω)T =

∫
1

d(ωT ) =

k∑
j=0

(−1)j
∫
σj

ωT ,

where ωT is a (k − 1)-form in Ω. On the other hand we have ∂[ϕ] =
∑k
j=0(−1)j [ϕj ] where

ϕj = ϕ ◦ σj = T ◦ σj using ϕ = T on Qk in the last equality. Therefore∫
∂[ϕ]

ω =

k∑
j=0

(−1)j
∫
[ϕj ]

ω =

k∑
j=0

(−1)j
∫
T◦σj

ω =

k∑
j=0

(−1)j
∫
σj

ωT .

This completes the proof for general k-surfaces.
The last thing to be mentioned is that claim now follows also for general chains by the

definition of integration over chains. □

4.4.9 Green’s theorem. Let n = 2. If ϕ is 2-chain in Ω ⊂ R2 and if ω = fe1 + ge2 is a
1-form of class C1, then dω = (D1g −D2f)e1,2. Stokes’ theorem is called Green’s theorem
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in this case ∫
ϕ

(D1g −D2f)e1,2 =

∫
∂ϕ

(fe1 + ge2).

In particular, when f(x1, x2) = −x2/2 and g(x1, x2) = x1/2 we get∫
ϕ

e1,2 =
1

2

∫
∂ϕ

(x1e2 − x2e1).

This quantity is called the area of (the range of) ϕ.
Use Green’s theorem to find the area of the triangle with vertices p0 = (0, 0)⊤, p1 =

(a, 0)⊤, and p2 = (b, c)⊤ where a, b, c > 0.

4.5. Closed and exact forms

4.5.1 Closed and exact forms. A form ω is called exact if there is another form λ such
that dλ = ω. A continuously differentiable form ω is called closed if dω = 0.

Every continuously differentiable exact form is closed but the converse is not true in
general. See next topic.
4.5.2 A closed form which is not exact. Let Ω = R2 \ {0} and consider the 1-form

ω =
y

x2 + y2
e1 −

x

x2 + y2
e2.

Then ω is closed but not exact. If f = arctan(x/y), then fx = y/(x2 + y2) and fy =
−x/(x2+y2). Since f is not defined on the x-axis ω is not exact in R2 \{0}. It is how exact
in both the upper and the lower half of the x-y-plane.
4.5.3 Poincaré’s lemma. If Ω is star-shaped, then every closed form in Ω is exact.

Sketch of proof: Given a point p ∈ Ω and any k-form µ =
∑
α∈Ikn

µαeα define the
(k − 1)-form

i(µ) =
∑
α∈Ikn

k∑
j=1

(−1)j−1(xαj
− pαj

)

∫
[0,1]

tk−1µα(p+ t(x− p))dt e(α1,...,��αj ,...,αk).

Then verify that di(µ) + i(dµ) = µ.
Thus, if dµ = 0, then µ = di(µ). □

The example ω = 2x
x2+y2 e1 + 2y

x2+y2 e2 = d ln(x2 + y2) defined on R2 \ {0} shows that
Poincaré’s lemma provides only a sufficient condition for exactness.

Sketch of proof: Given a point p ∈ Ω and any k-form µ =
∑
α∈Ikn

µαeα define the
(k − 1)-form

i(µ) =
∑
α∈Ikn

k∑
j=1

(−1)j−1(xαj − pαj )

∫
[0,1]

tk−1µα(p+ t(x− p))dt e(α1,...,��αj ,...,αk).

We compute i(dµ) and, using 3.0.15, di(µ) in the special case when k = 1. With the
abbreviation r(x, t) = p+ t(x− p) we have now

dµ =
∑

1≤α<β≤n

(Dαµβ −Dβµα)eα,β
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and

i(µ) =

n∑
α=1

(xα − pα)

∫
[0,1]

µα(r(x, t))dt.

Thus

i(dµ) =
∑

1≤α<β≤n

∫
[0,1]

t(Dαµβ −Dβµα)(r(x, t)) dt
(
(xα − pα)eβ − (xβ − pβ)eα

)
and

di(µ) =

n∑
α=1

∫
[0,1]

µα(r(x, t)) dt eα +

n∑
α=1

(xα − pα)

n∑
β=1

∫
[0,1]

t(Dβµα)(r(x, t)) dt eβ

=

n∑
α=1

∫
[0,1]

[
µα(r(x, t)) + (xα − pα)t(Dαµα)(r(x, t))

]
dt eα

+
∑

1≤α<β≤n

∫
[0,1]

[(xα − pα)t(Dβµα)(r(x, t))eβ + (xβ − pβ)t(Dαµβ)(r(x, t))eα]dt.

Adding the last two expressions gives

di(µ) + i(dµ) =

n∑
α=1

∫
[0,1]

[
µα(r(x, t)) + (xα − pα)t(Dαµα)(r(x, t))

]
dteα

+
∑

1≤α<β≤n

∫
[0,1]

t[(xα − pα)(Dαµβ)(r(x, t))eβ + (xβ − pβ)(Dβµα)(r(x, t))eα]dt

This should be µ. The general case may be worked similarly, it is, however, even more
involved. □

4.6. Vector Analysis

Obviously, the most important case for physics is the case n = 3 which we will now
investigate. Therefore, in this section, Ω denotes an open subset of R3. We often use bold
symbols to denote vectors in R3.
4.6.1 Dot and cross product in R3. Given two vectors a = (a1, a2, a3)

⊤ and b =
(b1, b2, b3)

⊤ in R recall that their dot product a · b and their cross product a × b are
respectively defined by

a · b = a1b1 + a2b2 + a3b3

and
a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

⊤.

4.6.2 Vector fields. A vector field on Ω is a continuous function from Ω to R3.
Given a vector field F we have the 1-form

ω
(1)
F = F1e1 + F2e2 + F3e3

and the 2-form
ω
(2)
F = F1e2,3 + F2e3,1 + F3e1,2.

Conversely, every 1-form and every 2-form gives rise to a vector field.
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4.6.3 Gradient, divergence and curl. Suppose u is a continuously differentiable real-
valued function on Ω. Then gradu = ∇u = (D1u,D2u,D3u)

⊤ is a vector field, called the
gradient of u.

If F is a continuously differentiable vector field on Ω, then the scalar-valued function
divF = ∇ · F = D1F1 +D2F2 +D3F3

is called the divergence of F while the vector field
curlF = ∇× F = (D2F3 −D3F2, D3F1 −D1F3, D1F2 −D2F1)

⊤

is called the curl of F.
Note that

du = ω
(1)
gradu, dω

(1)
F = ω

(2)
curlF, and dω

(2)
F = divFe1,2,3.

4.6.4 Reparametrization. Suppose ϕ is a k-surface in Rn and T : Qk → Qk is contin-
uously differentiable and bijective. Remember footnote on p. 5. Then ψ = ϕ ◦ T is also a
k-surface in Rn and ψ(Qk) = ϕ(Qk), a subset of Rn which we denote by S. We call both ϕ
and ψ parametrizations of S.

Since ∫
ψ

ω =

∫
Qk

∑
α∈Ikn

ωα ◦ ϕ ◦ TJ(ϕ ◦ T, α)

we have a closer look at J(ϕ ◦ T, α). Denote the vector (ϕα1
, ..., ϕαk

)⊤ by Φ. Then
J(ϕ ◦ T, α) = det(Φ ◦ T )′ = det(Φ′ ◦ T )T ′ = ((detΦ′) ◦ T )(detT ′) = J(ϕ, α) detT ′.

Hence the change of variables formula 3.0.14 shows that∫
ψ

ω =

∫
Qk

∑
α∈Ikn

(ωα ◦ ϕ ◦ T )J(ϕ ◦ T, α) =
∫
Qk

∑
α∈Ikn

(ωα ◦ ϕ)J(ϕ, α) =
∫
ϕ

ω

assuming that detT ′ > 0 everywhere. Otherwise, if detT ′ < 0 everywhere, we get
∫
ψ
ω =

−
∫
ϕ
ω.

In vector analysis one thinks of curves and surfaces as parametrizable sets. A curve
requires one parameter and a surface two. The parameter domains are finitely many copies
of Q1 or Q2, respectively. We also require that restrictions to the interior of the parameter
domains are injective. Thus a closed curve, for instance, is admissible, as is the figure 8.

This should perhaps be moved to an earlier section.
4.6.5 Potential functions. If u is a twice continuously differentiable real-valued function

on Ω, we have
0 = d2u = dω

(1)
gradu = ω

(2)
curl gradu.

Hence curl gradu = 0.
Conversely, assume that F is a continuously differentiable vector field on a star-shaped

set Ω such that curlF = 0. Then
0 = ω

(2)
curlF = dω

(1)
F ,

ω
(1)
F is closed. Poincaré’s lemma shows that the 1-form ω

(1)
F is exact, i.e., there is a twice

continuously differentiable 0-form u such that

ω
(1)
gradu = du = ω

(1)
F

i.e., F = gradu.
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A function continuously differentiable function u such that F = − gradu is called a
potential function for F and F is then called a conservative vector field.
4.6.6 Finding the potential of a conservative vector field. Suppose F is a conser-

vative vector field in Ω and that any two points in Ω can be connected by a smooth path
in Ω. Thus there is a continuously differentiable function u so that F = − gradu. Indeed,
define

v(r) = −
∫
[0,1]

F(γ(t)) · γ′(t)dt = −
∫
γ

ω
(1)
F

where γ is a smooth path in Ω (1-surface) connecting a fixed point r0 to r. Then

v(r) = −
∫
[0,1]

F(γ(t)) · γ′(t)dt =
∫
[0,1]

(u ◦ γ)′(t)dt = u(γ(1))− u(γ(0)).

It follows that v − u is constant and hence the v is also a potential function for F.
This is an extension of Poincaré’s lemma for k = 1.

4.6.7 Vector potentials. Suppose F is a twice continuously differentiable vector field in
Ω. Then

0 = d2ω
(1)
F = dω

(2)
curlF = (div curlF)e1,2,3.

Hence div curlF = 0.
Conversely, if G is a continuously differentiable vector field on a star-shaped set Ω such

that divG = 0, then dω
(2)
G = 0, i.e., ω(2)

G is a closed 2-form. Again Poincaré’s lemma
guarantees the existence of a 1-form λ such that dλ = ω

(2)
G . Define F to be the vector field

whose components are the coefficients of ej of λ = ω
(1)
F = F1e1 + F2e2 + F3e3.

The vector field F is then called a vector potential for G.
Poincaré’s lemma gives F = I × r where Ij =

∫
[0,1]

tGj(r0 + t(r − r0)dt, j = 1, 2, 3 as
one possibility.
4.6.8 Positively oriented n-surfaces in Rn. An n-surface ϕ in Rn is called positively

oriented if detϕ′ > 0 everywhere on the parameter domain Qn of ϕ.
4.6.9 Orientable surfaces. Let ϕ : Q2 → R3 be a parametrization of a surface S in R3

and define n = (D1ϕ)×(D2ϕ). One verifies that n = (J(ϕ, (2, 3)), J(ϕ, (3, 1)), J(ϕ, (1, 2)))⊤.
Note that n is perpendicular to the vectors D1ϕ and D2ϕ which are tangent to the surface
S. The vector n(s, t) is called a normal vector to S at the point ϕ(s, t).

The normal vectors at (s, t) of any parametrization ϕ◦T of S point either into the same
direction as n(s, t) or in the opposite direction depending on whether detT ′(s, t) is positive
or negative.

Suppose ℓ : Q1 → Q2 is a smooth path such that ϕ(ℓ(0)) = ϕ(ℓ(1)). A surface S is
called orientable if n(ℓ(0)) = n(ℓ(1)) for all ℓ.
4.6.10 The Möbius strip. Consider the chain

ϕ(s, t) =

2 cos(2πt) + (2s− 1) cos(πt)
2 sin(2πt) + (2s− 1) cos(πt)

(2s− 1) sin(πt)


for (s, t) ∈ [0, 1]× [0, 1]. Let ℓ(u) = (1/2, u)⊤. Then

ϕ(ℓ(u)) =

2 cos(2πu)
2 sin(2πu)

0


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and, in particular, ϕ(ℓ(0)) = ϕ(ℓ(1)). Also

n(s, t) = 2π

2 sin(πt)− 2 sin(3πt) + 2s− 1
2 cos(3πt)− 2 cos(πt)− 2s+ 1
4 cos(πt)(cos(2πt) + sin(2πt))


so that n(ℓ(0)) = −n(ℓ(1)).

We conclude that the Möbius strip is not orientable.
4.6.11 Positively oriented boundaries. The boundary of a positively oriented 3-surface

is orientable and is called positively oriented. For ϕ = 1
(3) : Q3 → Q3 we have

σ
(3)
0 (s, t) =

( 1−s−t
s
t

)
, σ

(3)
1 (s, t) =

( 0
s
t

)
, σ

(3)
2 (s, t) =

( s
0
t

)
, σ

(3)
3 (s, t) =

( s
t
0

)
.

The corresponding normal vectors are

n0 = (1, 1, 1)⊤, n1 = (1, 0, 0)⊤, n2 = (0,−1, 0)⊤, n3 = (0, 0, 1)⊤.

It follows that the positive orientation of ∂1(3) points outward. By continuity this is also
true for the boundaries of any positively oriented 3-surface.

The boundary of a orientable 2-surface is also called positively oriented. For instance
if ϕ(s, t) = (s, t, 0), i.e., if ϕ is the identity, then the (positive) orientation of ∂ϕ is counter-
clockwise. σ(2)

0 (t) = (1− t, t)⊤, σ(2)
1 (t) = (0, t)⊤, σ(2)

2 (t) = (t, 0)⊤.If ϕ(s, t) = (t, s, 0)⊤, then
the (positive) orientation of ∂ϕ is clockwise.
4.6.12 Line integrals. Suppose ϕ : Q1 → R3 is a parametrization of a curve C in R3.

Then
∫
C
F · dr is called the line integral of F along C and is defined by∫

C

F · dr =

∫
Q1

F ◦ ϕ · ϕ′.

Hence ∫
C

F · dr =

∫
ϕ

F ·
( e1
e2
e3

)
=

∫
ϕ

ω
(1)
F .

4.6.13 Flux. Suppose ϕ : Q2 → R3 is a parametrization of a surface S in R3. Then∫∫
S
F · dS is called the flux of F through S and is defined by∫∫

S

F · dS =

∫∫
Q2

F ◦ ϕ · n.

We now obtain∫∫
S

F · dS =

∫∫
Q2

[(F1 ◦ ϕ)J(ϕ, (2, 3)) + (F2 ◦ ϕ)J(ϕ, (3, 1)) + (F3 ◦ ϕ)J(ϕ, (1, 2))

=

∫
ϕ

(F1e2,3 + F2e3,1 + F3e1,2) =

∫
ϕ

ω
(2)
F .

4.6.14 Line elements. The vector ϕ′(t) occurring in 4.6.12 is a tangent vector to the
curve C at the point ϕ(t). Since ϕ′ represent velocity and |ϕ′| speed we define the length L
of the curve as

L =

∫
Q1

|ϕ′|dt. (11)
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The mass (or charge) M of a wire stretched out along C whose mass (or charge) density at
the point r is ρ(r) is given by

M =

∫
Q1

ρ ◦ ϕ|ϕ′|dt. (12)

The expression |ϕ′|dt is a called the line element for C. The integrals occurring in (11) and
(12) are not integrals of 1-forms.
4.6.15 Area elements. The normal vector n occurring in 4.6.9 is perpendicular to the

surface S and its magnitude is an approximation to the area of the surface patch ϕ(R)
when R is a small rectangle in Q2. D1ϕ and D2ϕ span a parallelogram in R3 whose area is
|n| = |(D1ϕ) × (D2ϕ)|. The area of the patch is almost the same by linear approximation.
Therefore the area A of S is given by

A =

∫
Q2

|n|d(s, t). (13)

One also defines the integrals ∫
Q2

f ◦ ϕ|n|d(s, t) (14)

when f is a real-valued function defined on S.
The expression |n|d(s, t) is called the area element of S. Again neither integral in (13)

and (14) is the integral of a 2-form.
4.6.16 Volume elements. The n-form represented by e1,...,n is called the volume element

in Rn. If ϕ is a positively oriented n-surface and f is a 0-form, then, using 3.0.14,∫
ϕ

fe1,...,n =

∫
Qn

(f ◦ ϕ) detϕ′ =
∫
ϕ(Qn)

f.

In particular, if f = 1 then we get the volume vol(ϕ(Qn)) of ϕ(Qn). If f = ρ, the mass
or charge density of a body occupying ϕ(Qn), then we get the total mass or charge of the
body.

This is an appropriate definition since the volume of the 3-simplex is 1/6 and the unit
cube is a chain of 6 congruent tetrahedra.
4.6.17 The classical version of Stokes’s theorem. Suppose F is a continuously differ-

entiable vector field in Ω and S is surface in Ω which can be realized as a chain of 2-surfaces.
Then ∫

S

curlF · dS =

∫
C

F · r

where C is the positively oriented boundary of S.

Sketch of proof: If S = ϕ(Q2) the abstract version of Stokes’s theorem gives∫
S

curlF · dS =

∫
ϕ

ω
(2)
curlF =

∫
ϕ

dω
(1)
F =

∫
∂ϕ

ω
(1)
F =

2∑
j=0

(−1)j
∫
ϕ◦∂σ(2)

j

ω
(1)
F

=

2∑
j=0

(−1)j
∫
Cj

F · r =

∫
C

F · r

where the Cj are the curves parametrized by ϕ ◦ ∂σ(2)
j . □
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4.6.18 Gauss’s theorem. Suppose F is a continuously differentiable vector field in Ω and
V a compact subset of Ω which can be realized as a chain of positively oriented 3-surfaces.
Then ∫

V

divF =

∫
S

F · dS

where S is the positively oriented boundary of V .

Sketch of proof: If V = ϕ(Q3) the abstract version of Stokes’s theorem gives∫
V

divF =

∫
ϕ

(divF)e1,2,3 =

∫
ϕ

dω
(2)
F =

∫
∂ϕ

ω
(2)
F =

3∑
j=0

(−1)j
∫
ϕ◦σ(3)

j

ω
(2)
F

=

3∑
j=0

(−1)j
∫
Sj

F · dSj =
∫
S

F · dS

where the Sj are the surfaces parametrized by ϕ ◦ σ(3)
j . □



APPENDIX A

Vector spaces and linear transformations

A.1. Vector spaces

A.1.1 Euclidean vector spaces. Rn is the set of all ordered lists of n real numbers.
Its elements are called vectors, real numbers themselves are sometimes called scalars. The
entries of a list defining a vector are called components or coordinates. We will usually think
of the lists as columns rather than rows. For typographical reasons we shall often use the
notation (a1, ...., an)

⊤ for the column whose components are a1, ..., an.
Two elements of Rn may be added componentwise, i.e.,

(a1, ...., an)
⊤ + (b1, ..., bn)

⊤ = (a1 + b1, ..., an + bn)
⊤.

If α is a scalar and a is a vector, we define

α(a1, ...., an)
⊤ = (αa1, ..., αan)

⊤.

This is called the scalar multiplication of a by α. With these operations Rn is a real vector
space in the sense of Linear Algebra.

There is also a canonical inner product (or scalar product) associated with Rn:

x · y =

n∑
j=1

xjyj

when x = (x1, ..., xn)
⊤ and x = (y1, ..., yn)

⊤.
Equipped with vector addition, scalar multiplication, and inner product as just defined

Rn is called the Euclidean vector space of dimension n.
A.1.2 Linear combinations. If x1, ..., xn ∈ Rn and α1, ..., αn ∈ R, the vector

α1x1 + ...+ αnxn

is called a linear combination of x1, ..., xn.
A.1.3 Linearly independence. The vectors x1, ..., xn ∈ Rn are called linearly indepen-

dent if α1x1 + ... + αnxn = 0 implies that α1 = ... = αn = 0. Otherwise, they are called
linearly dependent.

A set is called linearly independent, if any finite number of its elements are linearly
independent.
A.1.4 Subspaces. A nonempty subset S of Rn is called a subspace of Rn if αx+ βy ∈ S

whenever x, y ∈ S and α, β ∈ R. A subspace is a vector space with respect to the operations
of vector addition and scalar multiplication defined in A.1.1.
A.1.5 Spans. Let A be a nonempty subset of Rn. The set of all linear combinations of

finitely many elements of A is called the span of A. The span of A, denoted by spanA, is a
subspace of Rn. If W = spanA we also say that W is spanned by A or that A spans W .

37
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If A = ∅ we define spanA = {0}, the trivial vector space. Here we wrote, as is customary,
0 for the vector (0, ..., 0)⊤.
A.1.6 Bases and dimension. Suppose V is a subspace of Rn. A set B ⊂ V is called a

basis of V , if it is linearly independent and spans V . The empty set is a basis of the trivial
vector space {0}. Every basis of V has the same number of elements. This number is called
the dimension of V .

We call (v1, ..., vn) ∈ V n an ordered basis of V , if v1, ..., vn are pairwise distinct and
form a basis of V .

The vectors e1 = (1, 0, ..., 0)⊤, e2 = (0, 1, 0, ..., 0)⊤, ... en = (0, ..., 0, 1)⊤ form a basis
of Rn. The ordered basis (e1, ..., en) is called the standard basis of Rn. Sometimes we may
want to emphasize the dimension of the space to which a standard basis element belongs.
Then we use e(n)j instead of ej .

A.2. Linear operators

A.2.1 Linear operators. Let V and W be two vector spaces over R. The function
F : V →W is called a linear operator or a linear transformation, if

F (αx+ βy) = αF (x) + βF (y)

for all α, β ∈ R and all x, y ∈ V .
If F is a linear operator we have F (0) = 0 and F (−x) = −F (x).
It is customary to write Fx in place of F (x).

A.2.2 Kernel and range. The kernel of a linear operator F : V →W is the set kerF =
{x ∈ V : F (x) = 0}. The range of a linear transformation F : V → W is the set ranF =
F (V ) = {F (x) : x ∈ V } of all images of F .

Kernel and range of F are subspaces of V and W , respectively. The dimension of kerF
is called the nullity of F while the dimension of ranF is called the rank of F .
A.2.3 The vector space of linear operators. The set of all linear operators from the

vector space V to the vector space W is denoted by L(V,W ). We define an addition and a
scalar multiplication of linear operators by (F +G)(x) = F (x)+G(x) and (αF )(x) = αF (x)
when F and G are linear operators and α a real number. One may then show that L(V,W )
is a real vector space.
A.2.4 The fundamental theorem of Linear Algebra. Suppose V and W are finite-

dimensional vector spaces and T ∈ L(V,W ). Then

dim(kerT ) + dim(ranT ) = dimV.

This is also known as the rank-nullity theorem.
A.2.5 Compositions of linear operators. Suppose U , V , and W are finite-dimensional

vector spaces. If F : U → V and G : V →W are linear operators we define

(G ◦ F )(x) = G(F (x))

for all x ∈ U . Then G ◦ F , the composition of G and F , is a linear transformation from U
to W . Note that it makes no sense to define F ◦G unless W ⊂ U .

For simplicity one often writes GF in place of G ◦ F and F 2 in place of F ◦ F .
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A.2.6 Matrices and linear operators between Euclidean vector spaces. Let T be
a linear operator from Rn to Rm. Then

Te
(n)
j =

m∑
ℓ=1

Mℓ,je
(m)
ℓ

where the Mℓ,j are appropriate real numbers. These are customarily arranged in a rectan-
gular grid M with m rows and n columns, i.e.,

M =

M1,1 · · · M1,n

...
...

Mm,1 · · · Mm,n

 .

M is called an m × n-matrix. The set of all m × n-matrix with real entries is denoted by
Rm×n.

Of course, an m × n-matrix M determines a linear operator from Rn to Rm. Thus,
assuming standard bases in both domain and range, it is sensible to identify linear operators
from Rn to Rm with the corresponding m× n matrices.
A.2.7 Matrix algebra. The operations of addition, scalar multiplication, and composition

of linear operators between Euclidean vector spaces are reflected in corresponding algebraic
operations on matrices. Specifically, addition and scalar multiplication are represented by

M +N

 M1,1 +N1,1 · · · M1,n +N1,n

...
...

Mm,1 +Nm,1 · · · Mm,n +Nm,n

 and αM =

αM1,1 · · · αM1,n

...
...

αMm,1 · · · αMm,n


when M and N are m× n matrices

The composition of linear transformations turns into a multiplication of matrices, if we
define the product of an ℓ×m-matrix M and an m× n-matrix N by

(MN)j,k =

m∑
s=1

Mj,sNs,k, j = 1, ..., ℓ, k = 1, ..., n.

Note that it is necessary that the number of columns of M equals the number of rows of
N in order to form the product MN . This reflects the fact that the range of the operator
associated with N has to be in the domain of the operator associated with M . Thus matrix
multiplication is not commutative (but it is associative).
A.2.8 Distributive laws in matrix algebra. We have the following distributive laws

for matrices A,B,C whenever it makes sense to form the sums and products in question:
(A+B)C = AC +BC, A(B + C) = AB +AC, and α(AB) = (αA)B = A(αB).
A.2.9 Square matrices. A matrix is called a square matrix if it has as many columns as it

has rows. The elements M1,1, ..., Mn,n of an n× n-matrix are called diagonal elements and
together they form the main diagonal of the matrix. A matrix is called a diagonal matrix,
if its only non-zero entries are on the main diagonal.

The identity transformation F (x) = x defined on an n-dimensional vector space is
represented by the identity matrix 1 which is an n×n-matrix all of whose entries are 0 save
for the ones on the main diagonal which are 1.
A.2.10 Inverses. A linear operator T from Rn to Rn as well as the associated matrix is

called invertible, if it is bijective. Since here domain and co-domain have the same dimension,
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the rank-nullity theorem guarantees that T is injective if and only if it surjective. Thus T
is invertible if and only if kerT = {0}.
A.2.11 Determinants. We define the determinant of an n×n-matrix recursively. If n = 1

we set detA = A. If n > 1 we define the minor Mj,k to be the (n − 1) × (n − 1)-matrix
obtained from A by deleting row j and column k. Then we define

detA =

n∑
j=1

(−1)j+n detMj,nAj,n.

The determinant has the following properties: (i) detA = 0 if the rows or the columns
are linearly dependent. (ii) If B is obtained by switching two rows or two columns of A,
then detB = − detA. (iii) If B is obtained by multiplying a row or a column of A by the
number c, then detB = c detA.

A.3. Some facts about spectral theory

A.3.1 Eigenvalues and eigenvectors. Suppose A ∈ L(V, V ) where V is a real vector
space. If there exists a non-zero element x ∈ V and a real number λ such that Ax = λx,
then λ is called an eigenvalue of A and x an eigenvector associated with λ.

The kernel of A− λ1 is called the geometric eigenspace of A associated with λ.
A.3.2 Symmetric matrices. A matrix M ∈ Rn×n is called symmetric, if Mj,k = Mk,j .

Recall that M represents a linear operator from Rn to Rn.
If M is a symmetric matrix in Rn×n, then all its eigenvalues are real. Moreover, Rn has

an orthonormal basis consisting of eigenvectors.
A.3.3 Quadratic forms. A homogeneous quadratic polynomial in n variables with real

coefficients is called a quadratic form over R. Such a quadratic form is given by

q(x) =

n∑
j=1

n∑
k=1

Qj,kxjxk = x⊤Qx

where Q ∈ Rn×n. Note that the matrix Q may always be chosen to be symmetric. x⊤Qx =

q(x) = q(x) = x⊤Q⊤x and hence q(x) = 1
2x

⊤(Q+Q⊤)x.
A quadratic form q is called positive (or negative) semi-definite, if q(x) ≥ 0 (or q(x) ≤ 0)

whenever x ∈ Rn. It is called positive or negative definite if the inequalities are strict when
x 6= 0. A quadratic form which is not semi-definite is called indefinite. These expressions
are also used to characterize real symmetric matrices.

The following statements are true if Q is chosen symmetric:
(1) q is positive (negative) definite if and only if all eigenvalues of Q are positive

(negative).
(2) q is positive (negative) semi-definite if and only if none of the eigenvalues of Q are

negative (positive).



APPENDIX B

Miscellaneous

B.1. Algebra

B.1.1 The multinomial theorem. Let n and k be a natural numbers and x1, ..., xn real
numbers. Then

(x1 + ...+ xn)
k =

∑ k!

α1!...αn!
xα1
1 ...xαn

n

where the sum is over all choices of non-negative integers αj , j = 1, ..., n, such that α1 +
...+ αn = k. Induction over n assuming the binomial theorem as given.
B.1.2 Permutations. A permutation of a finite set X is a bijection from X to itself.

The set of such permutations is a group under composition. A permutation τ is called a
transposition if there are distinct elements x, y ∈ X such that τ(x) = y and τ(y) = x while
τ(z) = z whenever z ∈ X \ {x, y}. Every permutation is a composition of transpositions.
Such factorizations of permutations are not unique. However, if one factorization of a
permutation π has an even number of factors then this is true for all factorizations of π.
One defines therefore the parity of a permutation π, denoted by (−1)π, to be (−1)ℓ = ±1,
if it has a factorization consisting of ℓ transpositions. If ℓ is even π is called an even
permutation and otherwise an odd permutation.
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List of special symbols

Ω: the closure of Ω, 3

1: the identity transformation or identity matrix, 39
〈x, y〉: the inner product of the vectors x and y, 1
x · y: the Euclidean inner product of the vectors x and y, 1

J(ϕ, α): the Jacobian determinant associated with the k-index α, 21

kerF : the kernel of F , 38

L(V,W ): the space of linear operators from V to W , 38

V kn : the set of k-indices of type n, 20
Ikn: the set of basick-indices of type n, 20
Wn
k : a function space giving rise to differential forms, 20

‖A‖: the norm of the operator A, 2
‖x‖: the norm of the vector x, 1
|x|: the Euclidean norm of the vector x, 1

Rm×n: the set of real m× n-matrices, 39
ranF : the range of F , 38

Qk: the standard k-simplex, 20
span: the span of a set, 37
ek or e(n)k : the k-th member of the standard basis of Rn, 38
eα: an element of the standard basis of RV k

n , 20
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k-form, 21
k-index, 20

basic, 20
n-cell, 15

basis, 38
ordered, 38
standard, 38

boundary, 27

chain rule, 6
closed form, 30
component, 37
continuity, 3
contraction, 11
coordinate, 37
critical point, 9
curl, 32

definite, 40
derivative, 5

partial, 6
total, 5

diagonal
element, 39
main, 39

diagonal matrix, 39
differentiable

form, 22
function, 5

differential form, 21
directional derivative, 8
distance, 2
distance function, 2
divergence, 32

eigenspace
geometric, 40

eigenvalue, 40
eigenvector, 40
Euclidean vector space, 37
exact form, 30
extremum, 9

face of a cell, 16
face of an affine simplex, 27
fixed point, 11
flux, 34

gradient, 8, 32

Hessian, 9

identity matrix, 39
identity transformation, 39
indefinite, 40
inner product, 1, 37
invertible, 39

kernel, 38

limit, 3
line integral, 34
linear approximation, 5
linear combination, 37
linear independence, 37
linear operator, 38
linearly dependence, 37
Lipschitz condition, 6

main diagonal, 39
matrix, 39

diagonal, 39
square , 39

maximum
local, 9
strict local, 9
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metric, 2
metric space, 2
minimum

local, 9
strict local, 9

norm, 1
of a linear operator, 2

normal vector to a surface, 33
nullity, 38

orientable surface, 33
oscillation, 16

parity, 41
permutation

of a set, 41
positively oriented boundary, 34
potential function, 33

quadratic form, 40

range, 38
rank, 38
rank-nullity theorem, 38
refinement, 15
Riemann integral, 16

scalar, 37

scalar multiplication, 37
scalar product, 1, 37
Schwarz’s inequality, 1
semi-definite, 40
simplex

affine, 26
standard, 20

span, 37
subspace, 37
surface

positively oriented, 33
symmetric matrix, 40

total derivative, 5
transformation

linear, 38
transposition, 41
triangle inequality

for metric spaces, 2
for normed spaces, 1

vector, 37
vector addition in Rn, 37
vector field, 31

conservative, 33
vector potential, 33
volume of an n-cell, 15
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