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Exam Rules:

• This is a closed book examination. Once the exam begins, you have three
and one half hours to do your best. You are required to do seven of the eight
problems for full credit.

• Each problem is worth 10 points; parts of problems have equal value unless
otherwise specified.

• Justify your solutions: cite theorems that you use, provide counter examples
for disproof, give explanations, and show calculations for numerical problems.

• Begin each solution on a new page and write the last four digits of your univer-
sity student ID number, and problem number, on every page. Please write
only on one side of each sheet of paper.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• The use of calculators or other electronic gadgets is not permitted during the
exam.

• Write legibly using dark pencil or pen.



1. (a) Let T ∈ L(Rn) be a linear map with (T (x),x) = 0 for all x ∈ Rn, where
(·, ·) denotes the inner-product on Rn. Show that T ∗ = −T .

(b) Prove that if there exists a linear map V → W whose null space and range
are both finite dimensional, then V is finite dimensional.

2. Let α = {v1, · · · ,v5} be an arbitrary ordered basis for R
5. Let
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Define T : R5 → R5 by [T (v)]α = A[v]α for all v ∈ R5, where [v]α denotes the
coordinate representation of v relative to the basis α.

(a) Compute the eigenvalues of T and both the minimal and characteristic
polynomial of T .

(b) Find the Jordan form for T .

3. Let A be an n×n complex matrix. Define M = 1

2
(A+A∗) and N = 1

2
(A−A∗).

Prove that A is normal if every eigenvector of M is also an eigenvector of N .

4. Let A ∈ Rn×n, x ∈ Rn be a unit vector in the 2-norm, τ ∈ R and r = Ax− τx .

(a) Show that τ is an eigenvalue of a matrix A + E, where ‖E‖2 ≤ ‖r‖2 .

(b) Assuming in addition that A is symmetric, show that there exists an eigen-
value λ of A such that |λ − τ | ≤ ‖r‖2.

5. Prove that any Givens rotator matrix in R
n is a product of two Householder

reflector matrices. Can a Householder reflector matrix be a product of Givens
rotator matrices?

6. Suppose an m × n matrix has the form A =

[

A1

A2

]

, where A1 is a nonsingular

matrix of dimension n×n and A2 is an arbitrary matrix of dimension (m−n)×n

with m > n. Let A† be the pseudo inverse of A defined as (A∗A)−1A∗. Prove
that ‖A†‖2 ≤ ‖A−1

1
‖2 .



7. Let A = UΣV T be a singular value decomposition of an m× n matrix. Let the
nonzero singular values of A be σ1 ≥ σ2 ≥ . . . σr > 0. Prove the following:

(a) The rank(A) is r.

(b) ‖A‖2 = σ1, where ‖A‖2 is the 2− norm of A.

(c) ‖A‖F ≤
√

rank(A)‖A‖2 , where ‖ · ‖F is the Frobenius norm of A.

8. Let S ∈ Cm×m be skew-Hermitian, i.e., S∗ = −S . Show the following:

(a) The eigenvalues of S are purely imaginary.

(b) The matrix I − S is invertible.

(c) The matrix Q = (I − S)−1(I + S) is unitary.


