UNIVERSITY OF ALABAMA SYSTEM

Joint Doctoral Program in Applied Mathematics Joint Program Exam: Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

September 2006

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number, and problem number, on every page.

1. Let

$$A = \left(\begin{array}{cccc} 1 & 0 & a & b \\ 0 & 1 & 0 & 0 \\ 0 & c & 3 & -2 \\ 0 & d & 2 & -1 \end{array}\right).$$

- (a) Determine conditions on a, b, c, and d so that there is only one Jordan block for each eigenvalue of A in the Jordan canonical form of A.
- (b) Suppose now a = c = d = 2 and b = -2. Find the Jordan canonical form of A.

2. Let

$$A = \left(\begin{array}{rrr} -1 & 4 & -2 \\ -2 & 5 & -2 \\ -1 & 2 & 0 \end{array}\right)$$

with characteristic polynomial $\Delta(x) = (x-1)^2(x-2)$.

- (a) For each eigenvalue λ of A find a basis for the eigenspace E_{λ} .
- (b) Determine if A is diagonalizable. If so, give matrices P, B such that $P^{-1}AP = B$ and B is diagonal. If not, explain carefully why A is not diagonalizable.
- 3. Let V be a vector space over a field F and let W_1 and W_2 be finite dimensional subspaces of V. Prove that $W_1 \cap W_2$ and $W_1 + W_2 = \{u + v : u \in W_1, v \in W_2\}$ are finite-dimensional subspaces of V, and that

$$\dim(W_1 \cap W_2) + \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2).$$

4. Let $A=(a_{kj})\in\mathbb{R}^{n\times n}$ be symmetric and positive definite. Show that

$$\det \begin{pmatrix} a_{11} & \cdots & a_{1n} & x_1 \\ & \cdots & & \vdots \\ a_{n1} & \cdots & a_{nn} & x_n \\ x_1 & \cdots & x_n & 0 \end{pmatrix} < 0$$

for every nonzero vector $x = (x_1, \dots, x_n)^t$.

5. Consider the system

$$\left(\begin{array}{cc} \varepsilon & 1 \\ 2 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \end{array}\right).$$

Assume that $|\varepsilon| \ll 1$.

(a) Solve the system by using the LU decomposition with partial pivoting and adopting the following rounding off models (at all stages of the computation!):

$$a + b\varepsilon = a$$
 for $a \neq 0$,

and

$$a + b/\varepsilon = b/\varepsilon$$
 for $b \neq 0$.

- (b) Solve the system by using the LU decomposition without partial pivoting and adopting the same rounding off models as in (a).
- (c) Find the exact solution, compare, and make comments.
- 6. (a) Let $x, y \in \mathbb{R}^n$ be such that $x \neq y$ and $||x||_2 = ||y||_2 \neq 0$. Show that there is a unique reflection matrix P such that Px = y.
 - (b) Let $x, y \in \mathbb{C}^n$ be such that $x \neq y, ||x||_2 = ||y||_2 \neq 0$ and the Euclidean inner product of x and y is real. Show that there is a reflection matrix Q such that Qx = y.
- 7. (a) Find the reduced QR factorization of $A = \begin{bmatrix} 1 & 3 \\ -2 & 4 \\ 2 & -5 \end{bmatrix}$.
 - (b) Use the result in part (a) to find
 - i. the least squares solution of the system $A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -11 \\ -11 \end{bmatrix}$ and the corresponding residual vector; and
 - ii. the orthogonal projector on the column space of A (without using A itself, but in terms only of the orthogonal factor of A).
- 8. (a) Given $A \in \mathbb{R}^{m \times n}$, show that the nonzero eigenvalues are the same for $A^T A$ and AA^T .
 - (b) For the matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -1/2 & \sqrt{3}/2 \\ \sqrt{3} & 1 \end{bmatrix}$, obtain the singular value decomposition of A (in the form $A = U\Sigma V^T$ where U and V are orthogonal matrices).