UNIVERSITY OF ALABAMA SYSTEM

Joint Doctoral Program in Applied Mathematics Joint Program Exam: Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

May 2006

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number, and problem number, on every page.

1. Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix. Suppose x and x_c satisfy, respectively,

$$Ax = \mathbf{b}$$

and

$$(A + \Delta A)x_c = \mathbf{b}$$

where ΔA is the change in A and **b** is a nonzero vector.

(a) Show that if $||A^{-1}\Delta A|| < 1$, then

$$\frac{\|x - x_c\|}{\|x\|} \le \frac{\|A^{-1}\Delta A\|}{1 - \|A^{-1}\Delta A\|}.$$

(b) Show that if $||A^{-1}|| \cdot ||\Delta A|| < 1$, then

$$\frac{\|x - x_c\|}{\|x\|} \le \frac{\kappa(A) \frac{\|\Delta A\|}{\|A\|}}{1 - \kappa(A) \frac{\|\Delta A\|}{\|A\|}}$$

2. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues such that $|\lambda_1| > |\lambda_2| \ge \cdots |\lambda_{n-1}| > |\lambda_n| > 0$. Suppose $\mathbf{z} \in \mathbb{R}^n$ with $\mathbf{z}^T \mathbf{x}_1 \ne 0$, where $A\mathbf{x}_1 = \lambda_1 \mathbf{x}_1$. Prove that, for some constant C,

$$\lim_{k \to \infty} \frac{A^k \mathbf{z}}{\lambda_1^k} = C \mathbf{x}_1$$

and use this result to devise an algorithm for computing λ_1 and \mathbf{x}_1 . Explain how the calculation should be modified to obtain (a) λ_n and (b) the simple eigenvalue closest to 5.

- 3. Let $A \in \mathbb{C}^{n \times n}$ be normal. Show that:
 - (a) A is Hermitian if and only if its eigenvalues lie on the real axis.
 - (b) A is skew Hermitian (i.e., $A^* = -A$ where A^* denotes the conjugate transpose of the matrix A) if and only if its eigenvalues lie on the imaginary axis.
 - (c) A is unitary if and only if its eigenvalues lie on the unit circle.
- 4. Let $A \in \mathbb{C}^{n \times n}$ be tridiagonal and Hermitian, with all its super-diagonal entries nonzero. Prove that the eigenvalues of A are distinct.

(Hint: Show that for any scalar λ , the matrix $A - \lambda I$ has rank at least n - 1.)

- 5. Assume that $A \in \mathbb{C}^{m \times n}$.
 - (a) Prove that A and A^*A have the same null space.
 - (b) Use (a) to show that A^*A is nonsingular if and only if the rank of A is n.

$$M = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{array}\right).$$

Find a matrix T such that $T^{-1}MT$ is diagonal, or prove that such a matrix does not exist.

- (b) Find a matrix whose minimal polynomial is $x^2(x-1)^2$, whose characteristic polynomial is $x^4(x-1)^3$ and whose rank is 4.
- 7. Given a matrix $A \in \mathbb{C}^{n \times n}$, a number $z \in \mathbb{C}$ that is *not* an eigenvalue of A, a positive number ε , and denoting σ_n the smallest singular value of zI A, prove that the following conditions are equivalent:
 - (a) z is an eigenvalue of A + B for some B with $||B||_2 \le \epsilon$;
 - (b) there exists $u \in \mathbb{C}^n$ with $||(A-zI)u||_2 \le \varepsilon$ and $||u||_2 = 1$;
 - (c) $\sigma_n \leq \varepsilon$;
 - (d) $||(zI A)^{-1}||_2 \ge 1/\varepsilon$.
- 8. Suppose $A \in \mathbb{C}^{n \times n}$ is diagonalizable with $A = V\Lambda V^{-1}$, where Λ is a diagonal matrix, and let $B \in \mathbb{C}^{n \times n}$ be arbitrary. Then prove that every eigenvalue of A + B lies in at least one of n disks in the complex plane of radius $\kappa_2(V) \|B\|_2$ centered at the eigenvalues of A, where κ_2 is the 2-norm condition number.

(Hint: You may use the known fact (see the previous problem) that if z is an eigenvalue of A + B but not an eigenvalue of A, then $||(zI - A)^{-1}||_2 \ge 1/||B||_2$)