MA 227, CALCULUS III

Spring, 2010

Name (Print last name first):						
Student Signature:						
TEST I						
10 questions, 10 points each. SHOW ALL YOUR WORK!						
Question 1						
Calculate the cross product of $\mathbf{r}_1 = (2, -1, 1)$ and $\mathbf{r}_2 = (3, 1, -2)$.						
Answer:						
Question 2						
Let $\mathbf{r}(t) = (3t^{1/3}, e^{t^2-1}, 2t)$. Find $\mathbf{T}(1)$.						
Answer:						

<u> </u>	_
Question	3

Let $\mathbf{r}(t) = (t^3, t - 1, t^2)$. Find normal plane at point t = 1.

Answer:

Question 4

Let $\mathbf{r}(t) = (\cos(t), t, t^2)$. Find curvature κ at point t = 0.

0		_
()	uestion	h
w	ucoulon	\cdot

Find	the area	of the	parallelogram	generated	by the	vectors	(1, 2, -	-1) and	(-1.	1. :	2).

Answer:

$\underline{\text{Question } 6}$

Find the equation of the plane containing the points (1,2,3), (1,1,-1) and (-1,2,1).

\sim		_
()	uestion	1
w	ucoulon	

A	particle m	oves with	position	function	$\mathbf{r}(t) =$	$(t, \sin($	$t), e^{-t}).$	Find	velocity,	accelerat	ior
an	d tangentia	al and nor	mal com	onents o	f acceler	ation a	at point	t=0.			

Question	Q
Question	O

Let $f(x,y) = e^{x^2y} + y^2 \ln(x)$. Find partial derivatives f_x' and f_y' .

Answer:

Question 9

Let $f(x,y) = x\cos(y) - x^2y^3$. Find all second partial derivatives: f''_{xx} , f''_{xy} , f''_{yy} .

$\underline{\text{Question } 10}$

Let f = xyz and $\mathbf{F} = (xyz, y, z^2y)$. Find ∇f , div \mathbf{F} and curl \mathbf{F} .