$\begin{array}{c} \text{Mathematics 125 Midterm 1} \\ \text{Feb. 5, 2004} \end{array}$

- \bullet Calculators are allowed only for numerical calculations, that is you may not graph functions on your calculator.
- ullet There are two sheets of scratch paper attached at the end of the exam. Use them and but do not tear them off the exam.
- \bullet Show your work; clearly write down each step in your calculations/reasonings. *No credit* is given to a correct numerical answer *without* any justification.

1.(25 pts) Find the following limits if they exists. The values of the limits may take $+\infty$ or $-\infty$. Justify your answers for each case.

$$\lim_{x \to 1} \frac{1}{x^2 - 4}.$$

$$\lim_{x \to 2^+} \frac{1}{x^2 - 4}$$

$$\lim_{x \to 2} \frac{x-2}{x^2-4}.$$

$$\lim_{x \to \infty} \sqrt{x+1} - \sqrt{x}.$$

e)
$$\lim_{x\to +\infty} \frac{x^2+4}{x^2-4}$$

2.(20 pts) a) Show that the function |x-6| is not differentiable at x=6.

b) Find a formula for f'(x) where it is defined, and sketch its graph.

3.(20 pts) **a)** f is defined as follows;

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{when } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$$

Show f is continuous at x = 0. (Hint: use the Squeeze Theorem)

b) g is defined as follows;

$$g(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{when } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$$

Show g is differentiable at x = 0. (Hint: use a))

4.(15 pts) Show that there exists a number x whose cube is exactly one more than its square.

5.(20 pts) a) Use the definition of a derivative to find f'(4), where $f(x) = \sqrt{x}$.

. **b)** Find an equation of the tangent line to the curve $y = \sqrt{x}$ at the point (4,2).

- **6.**(20 pts) Water is flowing into three containers of different shapes; A) pinched neck, B) cylindical and C) conical (point-down). Let $H_A(t)$ represent the height of the water level of the container A at time t, and $H_B(t)$ $H_C(t)$ defined accordingly.
- a) For each function, select a graph which best represents its behavior from the six graphs below.
- b) For the derivative of each function (that is, $H'_A(t)$, $H'_B(t)$ and $H'_C(t)$) select a graph which best represent its behavior from the six graphs below.

Remark: You may want to compare the answers from a) and b) to see they are indeed consistent.