MA 227, CALCULUS III Fall, 2011

Name (Print last name first):
Student Signature:
TEST I
10 questions, 10 points each. SHOW ALL YOUR WORK!
Question 1
Calculate the cross product of $\mathbf{r}_1 = (1, -1, 2)$ and $\mathbf{r}_2 = (3, 2, -1)$.
Answer:
Question 2
Let $\mathbf{r}(t) = (2t^{1/2}, t^2, e^{t^4-1})$. Find $\mathbf{T}(1)$.
Answer:

Question	3

Let $\mathbf{r}(t) = (t, t, t^3)$. Find SYMMETRIC equation of the tangent line at point t = 1.

Answer:

Question 4

Let $\mathbf{r}(t) = (\sin(t), e^{-t}, t^2 - 1)$. Find curvature κ at point t = 0.

0		_
()	uestion	h
w	ucoulon	\cdot

Find	the area	of the	parallelogram	generated by	the vectors	(1, -1)	(-1) and	(-1, 2)	(2, 2)	١.
ı ma	unc anca	OI UIIC	paranciogram	Scholarca by	THE VECTORS	(т, т	, I / and	\ <u>+</u> , _	J, Z)	, .

Answer:

$\underline{\text{Question } 6}$

Find equation of the plane containing the points (2,2,1), (1,2,-1) and (-1,1,1).

O	_
Question	n '/
O UCSUIOI	

A particle moves with position function $\mathbf{r}(t) = (t^3, \sin(t),$	(t^2+1) . Find velocity, acceleration
and tangential and normal components of acceleration at	s point $t = 0$.

O	0
Questic	m ×
w. ucbuic	,,,,

Find parametric equation of the	line which passes through	the point $(2, 1, -1)$) and is orthog-
onal to the vectors $\mathbf{i} + \mathbf{j}$ and $2\mathbf{j}$	– k.		

O	_
Questio	m 9

A particle moves	with acceleration	$\mathbf{a}(t) = (0,$	e^{-t} , 2).	Find	velocity	and	position	function	if
the initial data ar	$\mathbf{v}(0) = (1, 0, 1)$	$\mathbf{r}(0) = (0$, 1, 1).						

Answer:

Question 10

Find the length of the curve given by $\mathbf{r}(t) = (2t, -2\sin t, 2\cos t)$ when $1 \le t \le 3$.