EGR 265-6D, Math Tools for Engineering Problem Solving December 11, 2015, 1:30pm to 4pm

Name (Print	t last name	first):	 	 	 ٠.	 <i>.</i>	 	 ٠.	 ٠.	 	
Student ID	Number: .		 		 	 					

Final Exam

Problem 1	
Problem 2	
Problem 3	
Problem 4 (incl. Bonus)	
Problem 5	
Problem 6	
Problem 7	
Problem 8	
Problem 9	
Problem 10	
Total (out of $100 + 5$ Bonus)	

Problem 1 (8 points)

Find an explicit solution of the initial value problem

$$yy' = -x, \quad y(1) = 1.$$

Problem 2 (10 points)

A liquid is heated to 150°F. It cools down according to Newton's law of cooling in a surrounding medium of temperature 70°F. The rate of cooling is k = -0.1.

- (a) State the differential equation which governs the temperature of the medium at time t according to Newton's law of cooling.
- (b) Solve this differential equation with the correct initial value (this can be done either as a separable or a linear equation).

(c) At what time has the temperature dropped to 75°F? (Logarithms do not need to be evaluated.)

Problem 3 (12 points)

Solve the initial value problem

$$y'' - 8y' + 16y = 16x - 4, \quad y(0) = 0, \ y'(0) = 3$$
 (1)

Problem 4 (12 points + 5 points bonus)

- A 1 kg mass stretches a spring by 2 meter. The medium through which the mass moves offers a damping force with damping coefficient $\beta = 6$ kg/s. Include the correct units in all your answers below.
- (a) Find the spring constant k, assuming that $g = 10 \text{ m/s}^2$.
- (b) Find the equation of motion of the mass if it is released from a position 20 cm below the equilibrium position with an upward velocity of 20 cm/s (choose the positive x-axis to be oriented downward).

- (c) Is the system underdamped, critically damped, or overdamped?
- (d) Will the mass return to the equilibrium position? If yes, when is the first time? If no, justify?

(e) (Bonus) An undamped spring with m=1 kg and k=1 $\frac{\mathrm{kg}}{\mathrm{s}^2}$ has an added exterior driving force of the form

$$F(t) = \sin(0.9t)$$

or

$$F(t) = \sin(t).$$

For both cases, without solving the DE, sketch what type of graph you expect for the solution x(t) and name the physical phenomenon which is seen.

Problem 5 (10 points)

(a) Find the gradient of $f(x, y) = xy \cos(x) + y^3$.

(b) Evaluate the directional derivative of f(x, y) at the point with coordinates (0, 1) in the direction of the vector $\mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$.

(c) Find the **direction** of steepest increase of f(x, y) at the point (0, 1).

Problem 6 (8 points)

Find the parametric equations for the normal line to the graph of $z=2x^3y-5x$ through the point (-1,-2,9).

Problem 7 (8 points)

Find the work done by the force field $\mathbf{F}(x,y) = y^2\mathbf{i} - x\mathbf{j}$ when moving along the curve given by the graph of $y = \frac{1}{2}x^2$, $0 \le x \le 2$. Include the correct unit, assumed that force is measured in Newtons.

Problem 8 (12 points)

- (a) Verify that the force field $\mathbf{F}(x,y) = (2xy + 2x)\mathbf{i} + (x^2 + 1)\mathbf{j}$ is conservative.
- (b) Find a potential function $\phi(x, y)$ for $\mathbf{F}(x, y)$.

(c) Find the work done by the force field F(x,y) along the curve parameterized by $x = \cos(t), y = \sin(2t), 0 \le t \le \pi/2$.

Problem 9 (10 points)

Let I_x and I_y denote the moments of inertia of a lamina with respect to rotation about the x-axis and y-axis, respectively.

(a) Find I_y for the triangular lamina of constant density $\rho(x,y)=1$, bordered by the x-axis, the y-axis, and the graph of $y=1-\frac{1}{2}x$.

(b) Is $I_x > I_y$ or $I_x < I_y$? Give a reason for this which does not require to calculate I_x .

Problem 10 (10 points)

Let R be the region in the first quadrant, given by a quarter of the unit disk centered at the origin. Find

$$\iint_R \frac{y}{\sqrt{x^2 + y^2}} \, dA$$