1. State Fundamental Theorem of Calculus (both parts).

2. Find the derivative f'(x) of the function

$$f(x) = \int_{\ln x}^{x^2} \sqrt{1 + t^3} \, dt$$

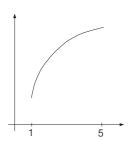
3. Evaluate the indefinite integral $\int \ln(x^5) dx$.

4. Evaluate the indefinite integral $\int e^{-2x} \sin x \, dx$.

5. Evaluate the indefinite integral

$$\int \frac{4}{x^2 - 4x} \, dx.$$

6. Evaluate the definite integral $\int_0^{\pi/2} \cos^4 x \, dx$.


7. Determine whether the improper integral

$$\int_0^\infty \frac{x^2}{(x^3+1)^{3/2}} \, dx$$

converges or diverges. If it converges, compute its value.

8. Find the area enclosed by the curves y = x, y = 1/x, and y = 2.

9. Let $I = \int_1^5 f(x) dx$, where f(x) is the function whose graph is shown below. For any value of n, list the numbers L_n , R_n , M_n , T_n , and I in increasing order.

10. Evaluate the definite integral $\int_{-1}^{1} xe^{-x^4} dx$ (the answer is simple, but you need to explain it).

[Bonus] Evaluate the integral

$$\int \frac{\sqrt{x^2 + 4}}{x^4} \, dx$$