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The differential equation

−u′′ + qu = λwu

• w is a real distribution of order 0 which is (relatively) small at
infinity but not necessarily positive.

• q is a positive distribution (and hence of order 0), q 6= 0.

• λ is the spectral parameter.

• Solutions u are absolutely continuous functions whose
derivatives are locally of bounded variation.
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Distributions

• Distributions are linear functionals on C∞0 (test functions)
with the following property:

• If supp(φ) ⊂ K ,

|w(φ)| ≤ C (K ) sup{
n(K)∑
k=0

|φ(k)(x)| : x ∈ K}.

• Distributions of order 0 are those where n(K ) = 0 for all K .

• Antiderivatives of distribution of order 0 are precisely the
functions of locally bounded variation, and hence locally in
one-to-one correspondence with complex measures.

• If W ∈ BVloc:

w(φ) =

∫
φdW
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The Hilbert space

• −u′′ + qu = λwu but w is not positive.

• q is positive turning this into the left-definite case.

• With Q ′ = q (and x the identity function)

〈f , g〉 =

∫
f ′g ′dx +

∫
f gdQ =

∫
(−f ′′ + qf )gdx

• H1 = {f ∈ ACloc : f ′ ∈ L2,
∫
|f |2dQ <∞}
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The reproducing kernel

• Fix x . Then `(x) : H1 → C : f 7→ f (x) is a bounded linear
functional.

• Riesz: there is g0(x , ·) ∈ H1 such that f (x) = 〈f , g0(x , ·)〉.
In other words, H1 is a reproducing kernel space.

• ‖`(x)‖2 = g0(x , x)

• If q = 1/4 then g0(x , x) = 1

• If q = δ0 then g0(x , x) = 1 + |x |

• If q = x2/4 then g0(x , x) ∼ 1/|x | near ±∞
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w small at infinity

• W ∈ BVloc, W ′ = w

• The total variation function of W generates a positive
measure (distribution) |w |.

• w small at infinity means `(·) ∈ L2(|w |) or∫
g0(x , x)|w |(x) <∞.

• If q = 1/4 or q = δ0, then |w | has to be a finite measure.

• If q = x2/4 then |w | may be an infinite measure but may not
be as large as Lebesgue measure (

∫
|w |/(1 + |x |) <∞)
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R0 and T

• Consider the Hermitian form w(f , g) =
∫
f gw and note

|w(f , g)| ≤ ‖f ‖‖g‖
∫
g0(·, ·)w .

• Define the bounded linear operator R0 : H1 → H1 by
〈R0f , g〉 = w(f , g).

• kerR0 = {f ∈ H1 : wf = 0} =: H∞
• H = H⊥∞ (H may be finite-dimensional)

• R0|H is the resolvent at 0 of a densely defined operator T

• Tf = g if and only if −f ′′ + qf = wg

• R0 is compact and the spectrum of T is discrete.
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Jost solutions

• There are unique solutions F± of −u′′ + qu = 0 “small” at
±∞ such that [F+,F−] = 1 and F+(0) = F−(0).

• F± = e∓x/2 for q = 1/4 and F± = max{1, 1∓ x} for q = δ0.

• Jost solutions are the unique solutions f±(·, λ) of
−u′′ + qu = λwu such that f±(x , λ) ∼ F±(x) as x → ±∞.

• f±(x , ·) and f ′±(x , ·) are entire and of exponential type 0.

• λn is an eigenvalue precisely when f±(x , λn) are multiples of
each other.

• Norming constants: ‖f±(x , λn)‖
• Matching constant: f+(x , λn) = αnf−(x , λn)
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Inverse Spectral Theory

Spectral data: eigenvalues and one set of norming or matching
constants

Theorem
Suppose T and T̆ have the same spectral data. Then there are
continuous functions s and r on R such that s is bijective,
s ′ = 1/r2, r > 0, r ′ ∈ BVloc,

q̆ ◦ s = r3(−r ′′ + qr) and w̆ ◦ s = r4w .

Conversely, given the latter conditions, T and T̆ have the same
spectral data.

• Eckhardt and Teschl (2013)

• Bennewitz, Brown, W. (2014)
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Application to Camassa-Holm

• The Camassa-Holm (CH) equation

ψt − ψtxx − 2κψx + 3ψψx = 2ψxψxx + ψψxxx ,

describes shallow water waves; ψ is deviation from the free
surface.

• κ is a dispersion coefficient (may be scaled to 0 or 1).

• Introducing w = ψxx − ψ + κ we may write more concisely

wt + 2ψxw + ψwx = 0.

• CH has many similarities with KdV, in particular, it is the
compatibility condition for the linear equations one of which is
−uxx + 1

4u = λwu.
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wt + 2ψxw + ψwx = 0.

• CH has many similarities with KdV, in particular, it is the
compatibility condition for the linear equations one of which is
−uxx + 1

4u = λwu.



The inverse scattering transform

• If T and T̆ have the same spectral data and if q = q̆(= 1/4),
then w = w̆ .

• The inverse scattering transform:

w(·, 0)
forward problem−−−−−−−−−−−−→ spectral datay y

w(·, t)
inverse problem←−−−−−−−−−−−− evolved spectral data

• Eigenvalues remain unchanged

• αn(t) = et/(2λn)αn(0)
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Sketch of proof – Fourier expansion

• Normalized eigenfunctions: en = f+(·, λn)/‖f+(·, λn)‖.

• Fourier series of u is u(x) =
∑

n ûnen(x) where ûn = 〈u, en〉
and û ∈ `2.

• We have the following situation:

H H̆

`2

U

F F̆−1

• We need to show that U defined here is a Liouville transform
(U−1ŭ = r ŭ ◦ s):
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Sketch of proof – Definition of s and r

• For simplicity assume supp(w) = R.

• H(a, b) = {u ∈ H : supp(u) = (a, b)}

• Set S+(x) = {y ∈ supp(w̆) : ŭ ∈ H̆(y ,∞)⇒ u ∈ H(x ,∞)}

• Since S+ not empty and bounded below we define
s+(x) = inf S+(x).

• One may also define s− and needs to prove s+ = s− and
supp(w̆) = R.

• Since, for any x , we have v(x)ŭ(s(x)) = v̆(s(x))u(x) we
define r by u(x) = r(x)ŭ(s(x)).
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Sketch of proof – Two main ingredients for the details

• The fact that U = F̆−1 ◦ F : H → H̆ is unitary is used to
show that S+ is bounded below and to show that gaps in
supp(w) correspond to those in supp(w̆).

• The basis of showing that S+ 6= ∅ is the following fact:
• If u ∈ H(x ,∞) and v̆ ∈ H̆(y ,∞), then either ŭ ∈ H̆(y ,∞) or

else v ∈ H(x ,∞).

• This, in turn, depends on a lemma by De Branges:
If F1 and F2 are entire and of exponential type 0 and if
min{|F1(z)|, |F2(z)|} = o(1) uniformly in Re(z) as
| Im(z)| → ∞, then one of F1 and F2 must be identically equal
to zero.
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Thank you for your attention!


