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The differential equation

—u" + qu = dwu

w is a real distribution of order 0 which is (relatively) small at
infinity but not necessarily positive.

e g is a positive distribution (and hence of order 0), g # 0.

A is the spectral parameter.

Solutions u are absolutely continuous functions whose
derivatives are locally of bounded variation.
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Distributions are linear functionals on C5° (test functions)
with the following property:

If supp(¢) C K,

n(K)

w(e)] < C(K sup{2|¢<k ix €K}

Distributions of order 0 are those where n(K) = 0 for all K.

Antiderivatives of distribution of order O are precisely the
functions of locally bounded variation, and hence locally in
one-to-one correspondence with complex measures.

If W € BVjoe:
w(@) = / odW
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The Hilbert space

—u" + qu = Awu but w is not positive.

e g is positive turning this into the left-definite case.

With Q" = g (and x the identity function)

(f,g) = / fg dx + / fgdQ = / (—F" + qf)gdx

Hy={f € ACy: ' € L2, [ |f]?dQ < oo}
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The reproducing kernel

e Fix x. Then {(x): H1 — C: f — f(x) is a bounded linear
functional.

e Riesz: there is go(x,-) € H1 such that f(x) = (f, go(x,-)).
In other words, H; is a reproducing kernel space.

* 1€()11% = go(x, x)
o If g =1/4 then go(x,x) =1
e If g = dp then go(x,x) =1+ |x]|

o If g = x2/4 then go(x,x) ~ 1/|x| near 00
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w small at infinity

o WeBV, W=w

e The total variation function of W generates a positive
measure (distribution) |w|.

e w small at infinity means ¢(-) € L?(|w|) or
[ go(x, x)|w|(x) < .

e If g=1/4 or g = dp, then |w| has to be a finite measure.

o If g = x2/4 then |w| may be an infinite measure but may not
be as large as Lebesgue measure ([ |w|/(1 + |x|) < 00)
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Ry and T

Consider the Hermitian form w(f,g) = [ fgw and note
w(f. &)l < IIfllllgll f gol-,)w.

Define the bounded linear operator Ry : H1 — H1 by
(Rof, g) = w(f, g).

ker Ro = {f € H1: wf =0} = Hoo

H = HL (H may be finite-dimensional)

Ro|# is the resolvent at 0 of a densely defined operator T
Tf = g if and only if —f" + gf = wg

e Ry is compact and the spectrum of T is discrete.
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Jost solutions

e There are unique solutions Fy of —u” + qu =0 “small” at
+o0 such that [F1, F-] =1 and F(0) = F_(0).
o Fr=e™/2forqg= 1/4 and Fy = max{1,1F x} for g = do.
e Jost solutions are the unique solutions 7.(-, A) of
—u" 4+ qu = Awu such that fi(x,A\) ~ Fi(x) as x — +oc.
e fi(x,-) and fL(x,-) are entire and of exponential type 0.

e )\, is an eigenvalue precisely when fi(x, \,) are multiples of
each other.

e Norming constants: ||fi(x, \p)||
e Matching constant: fi(x,\,) = anf—(x, Ap)
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Inverse Spectral Theory

Spectral data: eigenvalues and one set of norming or matching
constants
Theorem

Suppose T and T have the same spectral data. Then there are
continuous functions s and r on R such that s is bijective,
s'=1/r, r>0, r' € BV,

v

Jos=r3(—r"+qr) and Wwos=rtw.

Conversely, given the latter conditions, T and T have the same
spectral data.

e Eckhardt and Teschl (2013)
o Bennewitz, Brown, W. (2014)
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Application to Camassa-Holm

e The Camassa-Holm (CH) equation

Ut — Yixx — 26905 + 3UVthx = 205 Psx + Yxoxs

describes shallow water waves; v is deviation from the free
surface.

e k is a dispersion coefficient (may be scaled to 0 or 1).
e Introducing w = ¥ — ¥ + K we may write more concisely
we + 29w + Ypwy = 0.

e CH has many similarities with KdV, in particular, it is the
compatibility condition for the linear equations one of which is
—Usx + %u = Awu.
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The inverse scattering transform

If T and T have the same spectral data and if g = §(= 1/4),
then w = w.

e The inverse scattering transform:

forward problem

w(-,0) spectral data

l !

W ( y t) inverse problem

Eigenvalues remain unchanged

evolved spectral data

an(t) = et/A)a,(0)
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Sketch of proof — Fourier expansion

Normalized eigenfunctions: e, = (-, An)/|| (s An)]|-

e Fourier series of uis u(x) =), lpep(x) where 0, = (u, e,)
and 0 € (2,

We have the following situation:
2y u
N /
1

F -
N/
62

H

e We need to show that U/ defined here is a Liouville transform
(Ui =riios):
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Sketch of proof — Definition of s and r

e For simplicity assume supp(w) = R.

o H(a,b) = {u € H:supp(u) = (a, b)}
o Set Sy (x) = {y €supp(W): i € H(y,oo) = ue H(x,00)}

e Since 51 not empty and bounded below we define
sy(x) =inf S1(x).

e One may also define s_ and needs to prove sy = s_ and
supp(w) = R.

e Since, for any x, we have v(x)i(s(x)) = V(s(x))u(x) we
define r by u(x) = r(x)i(s(x)).
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Sketch of proof — Two main ingredients for the details

e Thefactthatd = F 1o F :H —His unitary is used to
show that S, is bounded below and to show that gaps in
supp(w) correspond to those in supp(w).

e The basis of showing that S, # () is the following fact:

o If ue H(x,00) and v € H(y, oc), then either i € H(y,o0) or
else v € H(x,00).

e This, in turn, depends on a lemma by De Branges:
If F1 and F; are entire and of exponential type 0 and if
min{|F1(2)|,|F2(z)|} = o(1) uniformly in Re(z) as
|Im(z)| — oo, then one of F; and F, must be identically equal
to zero.



Thank you for your attention!



